Gait analysis is an advanced methodology used in clinical and rehabilitative settings to study the biomechanics of human walking. This technique enables the identification of motor alterations in patients with neuromusculoskeletal conditions, supports the diagnosis, therapeutic planning, and monitoring of rehabilitative interventions. The data necessary for this analysis are acquired through various instruments, such as motion capture systems (for example Vicon), electromyographic instruments, and force and pressure plates, which collect complementary types of information. These data, which include parameters such as joint kinematics, ground reaction forces, and muscle activity, must be integrated to provide a complete and accurate evaluation of gait biomechanics. However, manually processing such data requires a significant expenditure of time and resources, increasing the risk of errors and inconsistencies in clinical reporting. This thesis focuses on automating the management and analysis of data from various software and acquisition tools by developing Python code to optimize the extraction, organization, and visualization of biomechanical parameters. Automation reduces processing times, improves standardization, and enhances the reliability of reports, thereby facilitating clinical interpretation. This system aims to improve operational efficiency and the quality of reporting in motion analysis laboratories.
L’analisi del cammino è una metodologia avanzata utilizzata in ambito clinico e riabilitativo per lo studio della biomeccanica della deambulazione. Questa tecnica consente di identificare alterazioni motorie in pazienti con patologie neuro-muscoloscheletriche, supportando diagnosi, pianificazione terapeutica e monitoraggio di interventi riabilitativi. I dati necessari per questa analisi vengono acquisiti tramite diversi strumenti, come i sistemi di motion capture (ad esempio Vicon), i sensori elettromiografici e le pedane di forza e di pressione, che acquisiscono tipologie di informazioni complementari. Questi dati, che riguardano parametri tra cui la cinematica articolare, le forze di reazione al suolo e l’attività muscolare, devono essere integrati per fornire una valutazione completa e accurata della biomeccanica del cammino. Tuttavia, l’elaborazione manuale di tali dati richiede un notevole dispendio di tempo e risorse, aumentando il rischio di errori e inconsistenze nella reportistica clinica. Questa tesi si concentra sull’automazione della gestione e dell’analisi dei dati provenienti da diversi software e strumenti di acquisizione, sviluppando un codice in Python per ottimizzare l’estrazione, l’organizzazione e la visualizzazione dei parametri biomeccanici. L’automatizzazione riduce i tempi di elaborazione, migliora la standardizzazione e aumenta l’affidabilità dei report, facilitando l’interpretazione da parte dei clinici. Questo sistema mira a migliorare l’efficienza operativa e la qualità della reportistica nei laboratori di analisi del movimento.
Automatizzazione di report clinici di Gait Analysis per la Riabilitazione Ortopedica
GIUSTO, MARTINA
2024/2025
Abstract
Gait analysis is an advanced methodology used in clinical and rehabilitative settings to study the biomechanics of human walking. This technique enables the identification of motor alterations in patients with neuromusculoskeletal conditions, supports the diagnosis, therapeutic planning, and monitoring of rehabilitative interventions. The data necessary for this analysis are acquired through various instruments, such as motion capture systems (for example Vicon), electromyographic instruments, and force and pressure plates, which collect complementary types of information. These data, which include parameters such as joint kinematics, ground reaction forces, and muscle activity, must be integrated to provide a complete and accurate evaluation of gait biomechanics. However, manually processing such data requires a significant expenditure of time and resources, increasing the risk of errors and inconsistencies in clinical reporting. This thesis focuses on automating the management and analysis of data from various software and acquisition tools by developing Python code to optimize the extraction, organization, and visualization of biomechanical parameters. Automation reduces processing times, improves standardization, and enhances the reliability of reports, thereby facilitating clinical interpretation. This system aims to improve operational efficiency and the quality of reporting in motion analysis laboratories.| File | Dimensione | Formato | |
|---|---|---|---|
|
Giusto_Martina.pdf
Accesso riservato
Dimensione
3 MB
Formato
Adobe PDF
|
3 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/82709