Coacervation or liquid-liquid phase separation (LLPS) is the process of separating a homogeneous solution of proteins, amphiphilic molecules, salts, or polymers into two distinct phases: a concentrated phase rich in macromolecules (called coacervate) and a dilute phase devoid of macromolecules. This associative phenomenon occurs mainly through electrostatic interactions between macromolecules with opposite charges, leading to the formation of a phase rich in colloids characterized by micro-droplets of coacervate. The reduction of the system's free electrostatic energy, caused by the interaction between oppositely charged polyelectrolytes and the release of counterions, is the main driving force of coacervation, despite the entropy reduction of the system, which would tend to disperse them. In this context, a multi-level system synthesized in the laboratory, consisting of different types of nanoparticles interconnected in a hierarchical structure, enables the reconstruction of a synthetic cell. This proto-cell offers the possibility of studying aspects such as controlled release mechanisms, morphogen- mediated differentiation, or the use of externally stored energy. In this thesis work, we analyzed the possibility of chemically synthesizing coacervates from simple macromolecules such as peptides, polymers, or pro-biotic molecules. Subsequently, some of these systems showed a tendency to coalesce, which is why, after their synthesis, we proceeded by centrifugation to remove the aqueous environment rich in ions and resuspended the coacervates in deionized water. For all the systems created, the ability to encapsulate ferromagnetic nanoparticles was evaluated, which solved the issue of the lack of delivery properties in coacervates. The loading capacity was then assessed using fluorescence optical microscopy tools that monitored fluorophores in solution or conjugated to the protein BSA. The final study involved "protecting" the coacervates inside liposomes. The resulting final system is a multi-level system in which it is possible to both encapsulate molecules of interest for delivery and study how an external signal (pH change, temperature, application of a magnetic field) can be received by the proto-cell and trigger signals useful for the initiation/regulation of chemical information.
La coacervazione o separazione di fase liquido-liquido (LLPS) è il processo di separazione di una soluzione omogenea di proteine, molecole anfifiliche, sali o polimeri in due fasi distinte: una fase concentrata ricca di macromolecole (chiamata coacervato) e una fase diluita priva di macromolecole. Questo fenomeno associativo avviene principalmente tramite interazioni elettrostatiche tra macromolecole costitutive di carica opposto che portano alla formazione di una fase ricca di colloidi caratterizzata da micro-gocce di coacervato. La riduzione dell'energia elettrostatica libera del sistema, causata dall'interazione tra poli-ioni carichi in modo opposto e il rilascio di contro-ioni, è la principale forza motrice della coacervazione, nonostante la riduzione di entropia del sistema che tenderebbe a disperderli. In questo contesto, un sistema a più livelli sintetizzato in laboratorio e costituito da diversi tipi di nanoparticelle interconnesse in una struttura gerarchica, consente la ricostruzione di una cellula sintetica. Questa proto-cellula offre la possibilità di studiare aspetti come meccanismi di rilascio controllato, la differenziazione mediata da morfogeni o l'utilizzo di energia immagazzinata esternamente. In questo lavoro di tesi abbiamo analizzato la possibilità di sintetizzare chimicamente coacervati a partire da macromolecole semplici come peptidi, polimeri o molecole pro-biotiche. Successivamente alcuni di questi sistemi mostravano una tendenza alla coalescenza, per questo motivo dopo la loro sintesi si è proceduti mediante centrifugazione a rimuovere l’ambiente acquoso ricco di ioni e a risospendere i coacervati in acqua deionizzata. Per tutti i sistemi creati è stata valutata la capacità di incapsulare al loro interno nanoparticelle ferromagnetiche che risolvessero il problema della direzionalità della delivery dei coacervati. La capacità di incapsulamento è invece stata valutata mediante l’utilizzo di strumenti di microscopia ottica a fluorescenza che monitorassero fluorofori in soluzione o coniugati fluorescenti alla proteina BSA. Lo studio finale prevedeva infine di “proteggere” i coacervati all’interno di liposomi. Il sistema finale che ne deriva è appunto un sistema a più livelli al cui interno è possibile sia incapsulare molecole d’interesse per il delivery, che studiare come un segnale esterno (cambiamento di pH, temperatura, applicazione di un campo magnetico) possa essere recepito dalla proto-cellula e innescarne segnali utili all’avvio/regolazione di informazioni chimiche.
Protocellule sintetiche a base di Coacervati
DI SERI, AURORA
2024/2025
Abstract
Coacervation or liquid-liquid phase separation (LLPS) is the process of separating a homogeneous solution of proteins, amphiphilic molecules, salts, or polymers into two distinct phases: a concentrated phase rich in macromolecules (called coacervate) and a dilute phase devoid of macromolecules. This associative phenomenon occurs mainly through electrostatic interactions between macromolecules with opposite charges, leading to the formation of a phase rich in colloids characterized by micro-droplets of coacervate. The reduction of the system's free electrostatic energy, caused by the interaction between oppositely charged polyelectrolytes and the release of counterions, is the main driving force of coacervation, despite the entropy reduction of the system, which would tend to disperse them. In this context, a multi-level system synthesized in the laboratory, consisting of different types of nanoparticles interconnected in a hierarchical structure, enables the reconstruction of a synthetic cell. This proto-cell offers the possibility of studying aspects such as controlled release mechanisms, morphogen- mediated differentiation, or the use of externally stored energy. In this thesis work, we analyzed the possibility of chemically synthesizing coacervates from simple macromolecules such as peptides, polymers, or pro-biotic molecules. Subsequently, some of these systems showed a tendency to coalesce, which is why, after their synthesis, we proceeded by centrifugation to remove the aqueous environment rich in ions and resuspended the coacervates in deionized water. For all the systems created, the ability to encapsulate ferromagnetic nanoparticles was evaluated, which solved the issue of the lack of delivery properties in coacervates. The loading capacity was then assessed using fluorescence optical microscopy tools that monitored fluorophores in solution or conjugated to the protein BSA. The final study involved "protecting" the coacervates inside liposomes. The resulting final system is a multi-level system in which it is possible to both encapsulate molecules of interest for delivery and study how an external signal (pH change, temperature, application of a magnetic field) can be received by the proto-cell and trigger signals useful for the initiation/regulation of chemical information.| File | Dimensione | Formato | |
|---|---|---|---|
|
Di Seri_Aurora.pdf
accesso aperto
Dimensione
19.44 MB
Formato
Adobe PDF
|
19.44 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/84434