Two-phase heat transfer in small diameter channels is widely used in many industries due to the ability to achieve high heat transfer coefficients. Main applications include cooling for automotive sector, HVAC systems (such as heat pumps and air conditioners), electronic cooling, refrigeration, and energy production. Additionally, the use of natural refrigerants and their mixtures, such as propane (R290) and carbon dioxide (CO₂), is becoming increasingly popular due to their reduced environmental impact (low GWP) and favourable thermodynamic properties. This thesis aims to investigate the behaviour of a zeotropic mixture during the condensation process within minichannels. Specifically, tests were conducted on a R290/CO₂ mixture with a mass composition of approximately 95/5%, characterized by a glide temperature of about 10 K. Heat transfer during condensation was analysed in two channels with diameters equal to 2.76 mm and 0.96 mm, respectively. Additionally, two-phase pressure drops were experimentally investigated in another minichannel with an internal diameter of 0.96 mm. The first part of this work describes the preparation and charging of the propane and carbon dioxide mixture into the system, as well as the estimation of its thermodynamic and transport properties. The initial experimental analysis of heat transfer during condensation was conducted in the 2.76 mm diameter test section, where local heat transfer coefficients were measured, and the flow process was observed through a borosilicate glass channel using a high-speed camera. The heat transfer coefficients were measured at a pressure of 14.5 bar, corresponding to a dew point temperature of 39.8°C and a bubble point temperature of 29.1°C, for mass fluxes ranging from 32 to 205 kg m⁻² s⁻¹. The experimental results were subsequently compared with models from the literature and experimental data for propane conducted in the same test section under similar conditions. Heat transfer during the condensation of the R290/CO₂ mixture was then studied in the test section with an internal diameter of 0.96 mm at a pressure of 14.2 bar, corresponding to a dew point temperature of 38.9°C and a bubble point temperature of 28.1°C, for mass fluxes between 100 and 600 kg m⁻² s⁻¹. The new data were compared with those obtained in the 2.76 mm diameter section to analyse the effect of channel size on the heat transfer coefficient. Again, the results were compared with literature models and experimental data for propane conducted in the same test section but at a pressure of 11 bar. Finally, to complete the study of the behaviour of the zeotropic mixture with a high glide temperature, pressure drops during two-phase adiabatic flow were analysed within a 0.96 mm internal diameter minichannel. The values obtained were compared with various models available in the literature and with experimental data for propane at a pressure of 14.1 bar in the same section. The mixture tests were conducted at mass fluxes of 200 and 400 kg m⁻² s⁻¹, at a pressure of 16.2 bar, with a dew point temperature of 44.6°C and a bubble point temperature of 34.3°C. The vapor quality range analysed was obtained through both condensation and vaporization processes.
Lo scambio termico bifase in canali di piccolo diametro è ampiamente impiegato in numerosi settori grazie alla possibilità di raggiungere elevati coefficienti di scambio termico. Tra le principali applicazioni si trovano il raffreddamento per il settore automobilistico, i sistemi HVAC (come pompe di calore e condizionatori), il raffreddamento di apparecchi elettronici, la refrigerazione e la produzione di energia. Inoltre, l’adozione di refrigeranti naturali e delle loro miscele, come il propano (R290) e l’anidride carbonica (CO2), sta diventando sempre più diffusa, grazie al loro ridotto impatto ambientale (basso GWP) e alle favorevoli proprietà termodinamiche. Il presente lavoro di tesi si propone di studiare il comportamento di una miscela zeotropica durante il processo di condensazione all’interno di minicanali. In particolare, sono stati condotti test su una miscela di R290/CO2 con una composizione di massa pari a circa 95/5%, caratterizzata da una temperatura di glide di circa 10 K. Lo scambio termico durante la condensazione è stato analizzato in due canali, rispettivamente di diametro uguale a 2.76 mm e 0.96 mm. Inoltre, sono state indagate sperimentalmente le cadute di pressione bifase all’interno di un altro minicanale con diametro interno di 0.96 mm. Nella prima parte di questo lavoro vengono descritti la preparazione e il caricamento della miscela di propano e anidride carbonica nell’impianto, nonché la stima delle sue proprietà termodinamiche e di trasporto. La prima analisi sperimentale dello scambio termico durante la condensazione è stata effettuata nella sezione di prova con diametro di 2.76 mm, dove è stato possibile misurare i coefficienti di scambio termico quasi-locali e osservare il processo di deflusso attraverso un canale in vetro borosilicato utilizzando una videocamera ad alta velocità. I coefficienti di scambio termico sono stati misurati a una pressione di 14.5 bar, corrispondente ad una temperatura di rugiada di 39.8°C e una temperatura di bolla di 29.1°C, per portate specifiche comprese tra 32 e 205 kg m-2 s-1. I risultati sperimentali sono stati successivamente confrontati con modelli presenti in letteratura e con dati sperimentali ottenuti per il propano, condotti nella stessa sezione sperimentale in condizioni simili. Successivamente lo scambio termico durante la condensazione della miscela di R290/CO2 è stato studiato nella sezione di prova con diametro interno di 0.96 mm, a una pressione di 14.2 bar, corrispondente a una temperatura di rugiada di 38.9°C e una temperatura di bolla di 28.1°C, per portate specifiche tra 100 e 600 kg m-2 s-1. I nuovi dati sono stati confrontati con quelli ottenuti nella sezione da 2.76 mm di diametro interno per analizzare l’effetto delle dimensioni dei canali sul coefficiente di scambio termico. Anche in questo caso, i risultati sono stati confrontati con modelli presenti in letteratura e con i dati sperimentali del propano, condotti nella stessa sezione sperimentale ma ad una pressione pari a 11 bar. Infine, per completare lo studio del comportamento della miscela zeotropica con una temperatura di glide elevata, sono state analizzate le cadute di pressione durante il deflusso adiabatico bifase all’interno di un minicanale con diametro interno di 0.96 mm. I valori ottenuti sono stati confrontati con diversi modelli disponibili in letteratura e con i dati sperimentali del propano ad una pressione di 14.1 bar nella stessa sezione. I test della miscela sono stati effettuati a 200 e 400 kg m-2 s-1, a una pressione di 16.2 bar, con temperatura di rugiada pari a 44.6°C e temperatura di bolla pari a 34.3°C. L’intervallo di titoli di vapore analizzato è stato ottenuto sia attraverso processi di condensazione che di vaporizzazione.
Experimental and theoretical study on two-phase heat transfer and pressure drops of a natural fluids mixture inside minichannels
CAPUZZO FRANCO, VERONICA
2024/2025
Abstract
Two-phase heat transfer in small diameter channels is widely used in many industries due to the ability to achieve high heat transfer coefficients. Main applications include cooling for automotive sector, HVAC systems (such as heat pumps and air conditioners), electronic cooling, refrigeration, and energy production. Additionally, the use of natural refrigerants and their mixtures, such as propane (R290) and carbon dioxide (CO₂), is becoming increasingly popular due to their reduced environmental impact (low GWP) and favourable thermodynamic properties. This thesis aims to investigate the behaviour of a zeotropic mixture during the condensation process within minichannels. Specifically, tests were conducted on a R290/CO₂ mixture with a mass composition of approximately 95/5%, characterized by a glide temperature of about 10 K. Heat transfer during condensation was analysed in two channels with diameters equal to 2.76 mm and 0.96 mm, respectively. Additionally, two-phase pressure drops were experimentally investigated in another minichannel with an internal diameter of 0.96 mm. The first part of this work describes the preparation and charging of the propane and carbon dioxide mixture into the system, as well as the estimation of its thermodynamic and transport properties. The initial experimental analysis of heat transfer during condensation was conducted in the 2.76 mm diameter test section, where local heat transfer coefficients were measured, and the flow process was observed through a borosilicate glass channel using a high-speed camera. The heat transfer coefficients were measured at a pressure of 14.5 bar, corresponding to a dew point temperature of 39.8°C and a bubble point temperature of 29.1°C, for mass fluxes ranging from 32 to 205 kg m⁻² s⁻¹. The experimental results were subsequently compared with models from the literature and experimental data for propane conducted in the same test section under similar conditions. Heat transfer during the condensation of the R290/CO₂ mixture was then studied in the test section with an internal diameter of 0.96 mm at a pressure of 14.2 bar, corresponding to a dew point temperature of 38.9°C and a bubble point temperature of 28.1°C, for mass fluxes between 100 and 600 kg m⁻² s⁻¹. The new data were compared with those obtained in the 2.76 mm diameter section to analyse the effect of channel size on the heat transfer coefficient. Again, the results were compared with literature models and experimental data for propane conducted in the same test section but at a pressure of 11 bar. Finally, to complete the study of the behaviour of the zeotropic mixture with a high glide temperature, pressure drops during two-phase adiabatic flow were analysed within a 0.96 mm internal diameter minichannel. The values obtained were compared with various models available in the literature and with experimental data for propane at a pressure of 14.1 bar in the same section. The mixture tests were conducted at mass fluxes of 200 and 400 kg m⁻² s⁻¹, at a pressure of 16.2 bar, with a dew point temperature of 44.6°C and a bubble point temperature of 34.3°C. The vapor quality range analysed was obtained through both condensation and vaporization processes.| File | Dimensione | Formato | |
|---|---|---|---|
|
CapuzzoFranco_Veronica.pdf
embargo fino al 10/04/2026
Dimensione
6.64 MB
Formato
Adobe PDF
|
6.64 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/84672