Society is currently addressing a significant issue that has been overlooked for a considerable period of time. The transportation sector, often lauded for its technological sophistication, has been identified as a substantial contributor to the escalating climate change issue. Aviation, in particular, has been identified as a significant contributor to anthropogenic climate change, owing to a series of complex processes that result in a net warming of the global surface. The aviation sector has undergone a substantial increase in activity in recent years; however, this growth has been accompanied by a considerable rise in emissions. Consequently, the development of advanced aircraft technologies is imperative to achieve the necessary improvements in next-generation propulsion systems. Firstly, to attain this objective, a comprehensive evaluation of all the variables that define conventional configurations is essential. To this end, an Airbus A320-200, powered by two CFM56 engines, was analyzed using a performance calculation tool. A series of optimization strategies were implemented with the primary objective of minimizing the climate impact. Subsequently, a hydrogen-powered parallel hybrid configuration equipped with proton exchange membrane fuel cell technology was integrated into the aforementioned aircraft. In this configuration, a crucial aspect is the maintenance of the operating temperature of the fuel cell stack. Therefore, the objective of the optimization process is to ascertain the optimal set of parameters for the thermal management system. In this study, a variety of global optimization methods were examined, including genetic and surrogate model-based algorithms, as well as local optimization algorithms specifically designed for derivation-free optimization. A thorough examination, employing the aforementioned methodologies, will facilitate an assessment of the potential of these state-of-the-art strategies and their limitations. The analysis will also provide an overview of the possible advances that are expected to occur in order for these engine technologies to have a significant impact on the aviation sector. In addition to elucidating the advantages, the analysis will also examine the limitations that may emerge in the short term. In conclusion, the thesis presented in the following pages aims to contribute to research in the field of sustainable aviation.
La società sta attualmente affrontando una questione di rilievo, che è stata trascurata per un considerevole lasso di tempo. I settori del trasporto, spesso ammirati per le loro prodezze tecnologiche, contribuiscono in modo significativo al peggioramento del problema del cambiamento climatico. In particolare, l’aviazione contribuisce al cambiamento climatico antropogenico attraverso una serie di processi complessi che portano a un riscaldamento netto della superficie terrestre. Il settore dell’aviazione ha sperimentato un incremento notevole in termini di attività negli ultimi anni, tuttavia, questa crescita è stata accompagnata da un aumento sostanziale delle emissioni. Di conseguenza, lo sviluppo di tecnologie avanzate per i motori aeronautici si rende indispensabile per conseguire i miglioramenti necessari nei sistemi di propulsione di prossima generazione. Per conseguire tale obiettivo, si rende imprescindibile effettuare una valutazione approfondita di tutte le variabili che definiscono le configurazioni convenzionali. A tal fine, è stato analizzato un Airbus A320-200 equipaggiato con due motori CFM56, utilizzando uno strumento di calcolo delle prestazioni. Sono state implementate diverse strategie di ottimizzazione con l’obiettivo generale di ridurre al minimo l’impatto climatico. In seguito, sul velivolo menzionato è stata integrata una configurazione ibrida parallela alimentata a idrogeno, che impiega la tecnologia delle celle a combustibile a membrana a scambio protonico. In tale configurazione, un aspetto cruciale riguarda il mantenimento della temperatura di esercizio dello stack di celle a combustibile. L’obiettivo dell’ottimizzazione è pertanto l’identificazione dell’insieme ottimale di parametri per il sistema di gestione termica. In tale ambito, sono stati esaminati diversi metodi di ottimizzazione globale, tra cui algoritmi genetici e basati su modelli surrogati, nonché algoritmi di ottimizzazione locale progettati specificamente per l’ottimizzazione senza vincoli di derivazione, come Cobyla. Un’analisi approfondita, dell’impiego delle metodologie citate, faciliterà la valutazione del potenziale di queste strategie all’avanguardia e dei loro limiti. L’analisi fornirà anche una panoramica dei possibili progressi che si auspica possano verificarsi affinché tali tecnologie possano produrre un impatto significativo nel settore dell’aviazione. Oltre a mettere in luce i benefici, l’analisi esaminerà anche le limitazioni che possono manifestarsi nel breve termine. La tesi presentata nelle pagine seguenti si prefigge di contribuire alla ricerca nel settore dell’aviazione sostenibile.
Optimization of next generation aircraft engines based on engine performance calculations
LAURO, SIMONE DIEGO
2024/2025
Abstract
Society is currently addressing a significant issue that has been overlooked for a considerable period of time. The transportation sector, often lauded for its technological sophistication, has been identified as a substantial contributor to the escalating climate change issue. Aviation, in particular, has been identified as a significant contributor to anthropogenic climate change, owing to a series of complex processes that result in a net warming of the global surface. The aviation sector has undergone a substantial increase in activity in recent years; however, this growth has been accompanied by a considerable rise in emissions. Consequently, the development of advanced aircraft technologies is imperative to achieve the necessary improvements in next-generation propulsion systems. Firstly, to attain this objective, a comprehensive evaluation of all the variables that define conventional configurations is essential. To this end, an Airbus A320-200, powered by two CFM56 engines, was analyzed using a performance calculation tool. A series of optimization strategies were implemented with the primary objective of minimizing the climate impact. Subsequently, a hydrogen-powered parallel hybrid configuration equipped with proton exchange membrane fuel cell technology was integrated into the aforementioned aircraft. In this configuration, a crucial aspect is the maintenance of the operating temperature of the fuel cell stack. Therefore, the objective of the optimization process is to ascertain the optimal set of parameters for the thermal management system. In this study, a variety of global optimization methods were examined, including genetic and surrogate model-based algorithms, as well as local optimization algorithms specifically designed for derivation-free optimization. A thorough examination, employing the aforementioned methodologies, will facilitate an assessment of the potential of these state-of-the-art strategies and their limitations. The analysis will also provide an overview of the possible advances that are expected to occur in order for these engine technologies to have a significant impact on the aviation sector. In addition to elucidating the advantages, the analysis will also examine the limitations that may emerge in the short term. In conclusion, the thesis presented in the following pages aims to contribute to research in the field of sustainable aviation.| File | Dimensione | Formato | |
|---|---|---|---|
|
Lauro_Simone_Diego.pdf
accesso aperto
Dimensione
10.51 MB
Formato
Adobe PDF
|
10.51 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/87247