As the world population ages, the incidence of orthopaedic pathologies and degenerative joint diseases is constantly increasing, and so also the intervention of prosthetic implants. Therefore, it is essential to guarantee the quality, reliability and durability of implantable devices. On the basis of these needs, this thesis aims to optimize the titanium machining process through the investigation on the impact of different Physical Vapor Deposition (PVD) tool coatings on the machinability of commercially pure Grade 2 titanium under cryogenic and conventional flood cooling conditions. Titanium alloys are widely used in biomedical applications due to their excellent mechanical properties and biocompatibility, but they are notoriously difficult to machine because of their low thermal conductivity, high chemical reactivity and tendency to cause rapid tool wear. The experimental study involved cryogenic turning operations with constant cutting parameters (cutting speed 35 m/min, feed 0.1 mm/rev, depth of cut 0.5 mm) using uncoated and coated carbide inserts treated with various high-performance PVD coatings. Each coating was firstly subjected to pre-turning characterisation consisting in SEM observation, EDS and XRD analysis and scratch tests. Their cutting performance was compared in terms of tool wear, surface roughness and cutting forces after longitudinal turning. An objective function, considering both surface roughness and tool wear with appropriate weighting factors, was implemented to enable a quantitative and comparative ranking of the inserts. Results have demonstrated that cryogenic cooling significantly improves the machined surface finish and extends tool life compared to traditional flood cooling, although the effects vary depending on the type of coating. The UNCOATED insert exhibited lower wear due to the absence of a sacrificial coating layer, but this outcome does not imply better overall performance for practical applications. Among the coated inserts, the presence of a predominantly monophasic structure and the absence of titanium in the coating have proven to be key factors in achieving superior wear resistance and surface quality, while certain coatings have shown enhanced performance depending on the adopted cooling strategy. This study highlights the critical role of appropriate coating selection and cooling methods in optimizing titanium machining processes for biomedical applications, supporting improved implant manufacturing efficiency and quality.
Con l'invecchiamento della popolazione mondiale, l'incidenza delle patologie ortopediche e delle malattie degenerative delle articolazioni è in costante aumento, così come il ricorso agli impianti protesici. È quindi essenziale garantire la qualità, l'affidabilità e la durata dei dispositivi impiantabili. In risposta a queste esigenze, la presente tesi si propone di ottimizzare il processo di lavorazione del titanio attraverso l'analisi dell’impatto di diversi rivestimenti per utensili ottenuti tramite deposizione fisica da vapore (PVD) sulla lavorabilità del titanio grado 2 commercialmente puro, in condizioni di raffreddamento criogenico e tradizionale (flood). Le leghe di titanio sono ampiamente utilizzate in ambito biomedicale per le loro eccellenti proprietà meccaniche e biocompatibilità, ma sono notoriamente difficili da lavorare a causa della bassa conducibilità termica, dell’elevata reattività chimica e della tendenza a provocare rapida usura dell’utensile. Lo studio sperimentale ha previsto operazioni di tornitura criogenica con parametri di taglio costanti (velocità di taglio 35 m/min, avanzamento 0.1 mm/giro, profondità di passata 0.5 mm), utilizzando inserti in metallo duro rivestiti e non rivestiti, trattati con diversi rivestimenti PVD ad alte prestazioni. Ogni rivestimento è stato inizialmente sottoposto a caratterizzazione pre-tornitura mediante osservazioni al SEM, analisi EDS e XRD e scratch test. Dopo la tornitura longitudinale, le prestazioni di taglio sono state poi confrontate in termini di usura dell’utensile, finitura superficiale e forze di taglio. Al fine di ottenere una classificazione quantitativa e comparativa degli inserti, è stata implementata una funzione obiettivo che considera sia la rugosità superficiale sia l’usura dell’utensile, assegnando ad ognuno dei due parametri un peso opportuno. I risultati hanno dimostrato che il raffreddamento criogenico migliora significativamente la finitura della superficie lavorata ed estende la vita dell’utensile rispetto al raffreddamento tradizionale, sebbene l’efficacia vari in base al tipo di rivestimento. L’inserto non rivestito ha mostrato un’usura inferiore, dovuta all’assenza di uno strato di rivestimento sacrificabile, ma questo risultato non implica necessariamente una prestazione complessiva migliore in ambito applicativo. Tra gli inserti rivestiti, la presenza di una struttura tendenzialmente monofasica e l’assenza di titanio nel rivestimento si sono rivelate determinanti per ottenere la migliore resistenza all’usura e qualità della superficie, mentre alcuni rivestimenti hanno mostrato prestazioni ottimizzate in funzione della strategia di raffreddamento adottata. Questo studio evidenzia il ruolo cruciale della corretta selezione del rivestimento e del metodo di raffreddamento nell’ottimizzazione dei processi di lavorazione del titanio per applicazioni biomedicali, contribuendo al miglioramento dell’efficienza e della qualità nella produzione di impianti.
Impact of Different Tool Coating Types on the Machinability of Grade 2 Titanium for Biomedical Applications
MARTINUZZI, MARCO
2024/2025
Abstract
As the world population ages, the incidence of orthopaedic pathologies and degenerative joint diseases is constantly increasing, and so also the intervention of prosthetic implants. Therefore, it is essential to guarantee the quality, reliability and durability of implantable devices. On the basis of these needs, this thesis aims to optimize the titanium machining process through the investigation on the impact of different Physical Vapor Deposition (PVD) tool coatings on the machinability of commercially pure Grade 2 titanium under cryogenic and conventional flood cooling conditions. Titanium alloys are widely used in biomedical applications due to their excellent mechanical properties and biocompatibility, but they are notoriously difficult to machine because of their low thermal conductivity, high chemical reactivity and tendency to cause rapid tool wear. The experimental study involved cryogenic turning operations with constant cutting parameters (cutting speed 35 m/min, feed 0.1 mm/rev, depth of cut 0.5 mm) using uncoated and coated carbide inserts treated with various high-performance PVD coatings. Each coating was firstly subjected to pre-turning characterisation consisting in SEM observation, EDS and XRD analysis and scratch tests. Their cutting performance was compared in terms of tool wear, surface roughness and cutting forces after longitudinal turning. An objective function, considering both surface roughness and tool wear with appropriate weighting factors, was implemented to enable a quantitative and comparative ranking of the inserts. Results have demonstrated that cryogenic cooling significantly improves the machined surface finish and extends tool life compared to traditional flood cooling, although the effects vary depending on the type of coating. The UNCOATED insert exhibited lower wear due to the absence of a sacrificial coating layer, but this outcome does not imply better overall performance for practical applications. Among the coated inserts, the presence of a predominantly monophasic structure and the absence of titanium in the coating have proven to be key factors in achieving superior wear resistance and surface quality, while certain coatings have shown enhanced performance depending on the adopted cooling strategy. This study highlights the critical role of appropriate coating selection and cooling methods in optimizing titanium machining processes for biomedical applications, supporting improved implant manufacturing efficiency and quality.| File | Dimensione | Formato | |
|---|---|---|---|
|
Martinuzzi_Marco.pdf
Accesso riservato
Dimensione
6.62 MB
Formato
Adobe PDF
|
6.62 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/87534