This thesis analyses the impact of micro changes in interest rates on financial markets, with a focus on the bond market. Starting from the definition of interest rates and their role in economic processes, it explores how even small changes can generate significant and non-linear effects, following a logic consistent with chaos theory and the metaphor of the butterfly effect. This work proposes an approach to the analysis of interest rate risk, with a focus on the relationship between rates and prices, and the sensitivity of securities, assessed through tools such as duration, convexity and key rate duration. The theoretical analysis is flanked by concrete case studies, including an in-depth look at the 1994 bond crisis, which shows how instability can arise from chaotic mechanisms within the financial system. In this context, on an empirical level, a principal component analysis (PCA) applied to US Treasury bond yields is proposed to isolate the main risk factors and understand the structural changes in the rate curve. The results highlight the importance of risk management, advanced statistical analysis and monetary policies to ensure financial market stability.
Questa tesi analizza l’impatto delle microvariazioni dei tassi di interesse sui mercati finanziari, con particolare attenzione al mercato obbligazionario. Partendo dalla definizione dei tassi di interesse e del loro ruolo nei processi economici, si esplora come anche cambiamenti minimi possano generare effetti significativi e non lineari, secondo una logica coerente con la teoria del caos e la metafora dell’Effetto Farfalla. L’elaborato propone un approccio all’analisi del rischio di tasso, con particolare attenzione alla relazione tra tassi e prezzi, e alla sensibilità dei titoli, valutata attraverso strumenti come duration, convessità e key rate duration. L’analisi teorica è affiancata da casi studio concreti, tra cui un approfondimento sulla crisi obbligazionaria del 1994, in cui si mostra come l’instabilità possa derivare da meccanismi caotici interni al sistema finanziario. In questo contesto, a livello empirico, si propone un’analisi delle componenti principali (PCA) applicata ai rendimenti dei Treasury bond statunitensi, per isolare i fattori principali di rischio e comprendere le variazioni strutturali della curva dei tassi. I risultati evidenziano l’importanza della gestione del rischio, dell’analisi statistica avanzata e delle politiche monetarie per garantire la stabilità dei mercati finanziari.
Metafora dell’Effetto Farfalla: l’impatto delle microvariazioni nei tassi di interesse sui mercati
SCHIVO, CLAUDIA
2024/2025
Abstract
This thesis analyses the impact of micro changes in interest rates on financial markets, with a focus on the bond market. Starting from the definition of interest rates and their role in economic processes, it explores how even small changes can generate significant and non-linear effects, following a logic consistent with chaos theory and the metaphor of the butterfly effect. This work proposes an approach to the analysis of interest rate risk, with a focus on the relationship between rates and prices, and the sensitivity of securities, assessed through tools such as duration, convexity and key rate duration. The theoretical analysis is flanked by concrete case studies, including an in-depth look at the 1994 bond crisis, which shows how instability can arise from chaotic mechanisms within the financial system. In this context, on an empirical level, a principal component analysis (PCA) applied to US Treasury bond yields is proposed to isolate the main risk factors and understand the structural changes in the rate curve. The results highlight the importance of risk management, advanced statistical analysis and monetary policies to ensure financial market stability.| File | Dimensione | Formato | |
|---|---|---|---|
|
Schivo_Claudia.pdf
Accesso riservato
Dimensione
7.57 MB
Formato
Adobe PDF
|
7.57 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/88549