In today’s logistics landscape, where efficiency and responsiveness are increasingly critical, warehouse picking processes have become a key driver of operational performance. Nevertheless, SKU variety, layout constraints, and organizational complexity often hinder the effective application of optimization strategies. This thesis aims to analyze and improve picking operations within Oniverse’s logistics environment, through an integrated approach combining lean theory and operational analysis. It begins with a review of lean thinking principles applied to logistics and warehouse management, with a specific focus on picking strategies and routing methods. An empirical analysis was then conducted across two warehouse areas, Marketing Material and Technical Area, including detailed storage mapping, SKU classification via ABC analysis, and examination of the current layout. The core of the thesis involves the development of a spatial distance model based on coordinate mapping and combinatorial logic, enabling the comparison between the existing layout and several proposed alternatives. Simulations based on real operational data, including handled volumes, picking times, and access frequency, highlight significant potential improvements in terms of efficiency, travel time, and operational costs. The thesis concludes with an operational re-layout proposal currently under evaluation, demonstrating how the integration of lean principles and data-driven approaches can offer concrete and measurable support for warehouse process optimization.
Nel contesto odierno della logistica, dove l'efficienza e la reattività sono sempre più critiche, i processi di picking nei magazzini sono diventati un fattore chiave per le performance operative. Tuttavia, la varietà di SKU, i vincoli di layout e la complessità organizzativa ostacolano spesso l’applicazione efficace delle strategie di ottimizzazione. La presente tesi si propone di analizzare e migliorare le operazioni di picking all'interno dell'ambiente logistico di Oniverse, attraverso un approccio integrato che combina la teoria lean e l'analisi operativa. Il lavoro inizia con una rassegna dei principi del lean thinking applicati alla logistica e alla gestione dei magazzini, con un focus specifico sulle strategie di picking e i metodi di routing. Successivamente, è stata condotta un'analisi empirica su due aree del magazzino, Marketing e Area Tecnica, comprendente una mappatura dettagliata delle scaffalature, la classificazione degli SKU tramite analisi ABC e l'esame del layout attuale. Il cuore della tesi consiste nello sviluppo di un modello delle distanze spaziali basato sulla mappatura delle coordinate e sulla logica combinatoria, che permette di confrontare il layout esistente con diverse alternative proposte. Le simulazioni, basate su dati operativi reali, inclusi i volumi trattati, i tempi di picking e la frequenza degli accessi, evidenziano potenziali miglioramenti significativi in termini di efficienza, tempi di percorrenza e costi operativi. La tesi si conclude con una proposta di rielaborazione del layout operazionale, attualmente in fase di valutazione, dimostrando come l'integrazione dei principi lean e degli approcci basati sui dati possa offrire un supporto concreto e misurabile per l'ottimizzazione dei processi di magazzino.
Analysis and Optimization of Picking Processes in Warehouse Operations: the Oniverse case
MARENGO, ENRICO
2024/2025
Abstract
In today’s logistics landscape, where efficiency and responsiveness are increasingly critical, warehouse picking processes have become a key driver of operational performance. Nevertheless, SKU variety, layout constraints, and organizational complexity often hinder the effective application of optimization strategies. This thesis aims to analyze and improve picking operations within Oniverse’s logistics environment, through an integrated approach combining lean theory and operational analysis. It begins with a review of lean thinking principles applied to logistics and warehouse management, with a specific focus on picking strategies and routing methods. An empirical analysis was then conducted across two warehouse areas, Marketing Material and Technical Area, including detailed storage mapping, SKU classification via ABC analysis, and examination of the current layout. The core of the thesis involves the development of a spatial distance model based on coordinate mapping and combinatorial logic, enabling the comparison between the existing layout and several proposed alternatives. Simulations based on real operational data, including handled volumes, picking times, and access frequency, highlight significant potential improvements in terms of efficiency, travel time, and operational costs. The thesis concludes with an operational re-layout proposal currently under evaluation, demonstrating how the integration of lean principles and data-driven approaches can offer concrete and measurable support for warehouse process optimization.| File | Dimensione | Formato | |
|---|---|---|---|
|
Marengo_Enrico.pdf
Accesso riservato
Dimensione
5.2 MB
Formato
Adobe PDF
|
5.2 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/88599