This thesis aims to analyze, design, and implement an electrical drive system for direct current (DC) motors intended for heavy-duty applications, characterized by mechanical loads with high inertia. These operating conditions present significant challenges in terms of torque control, dynamic stability, and system responsiveness. In the initial phase, a theoretical analysis of the DC motor characteristics and the modeling of the variable mass mechanical load was conducted. Based on this model, a closed-loop control system was developed, utilizing PI controllers and compensation techniques, with the goal of ensuring high performance in terms of speed regulation accuracy and robustness against external disturbances and load variations. Subsequently, an Active Front End (AFE) converter was designed and integrated into the system. This converter allows for bidirectional power flow control, harmonic reduction in the grid, and improved power factor. The validation of the entire system was carried out through numerical simulations, which confirmed the validity of the adopted design approach and the effectiveness of the proposed solutions. The results demonstrate the drive’s ability to operate under demanding conditions while maintaining high levels of efficiency, stability, and reliability. This work contributes to the development of advanced solutions for the control and powering of DC motors used in industrial applications with high operational severity, such as lifting systems, cable transportation systems, and electric railway traction.
La presente tesi si propone di analizzare, progettare e implementare un azionamento elettrico per motori a corrente continua (DC) destinato ad applicazioni di tipo heavy-duty, caratterizzate dalla presenza di carichi meccanici con elevata inerzia. Tali condizioni operative risultano significative in termini di controllo della coppia, stabilità dinamica e reattività del sistema. In una prima fase, è stata condotta un’analisi teorica delle caratteristiche del motore DC e della modellazione del carico meccanico a massa variabile. A partire da tale modello, è stato sviluppato un sistema di controllo ad anello chiuso, basato su regolatori PI e tecniche di compensazione, con l’obiettivo di garantire elevate prestazioni in termini di precisione nella regolazione della velocità e robustezza nei confronti delle perturbazioni esterne e delle variazioni del carico. Successivamente è stato progettato e integrato un convertitore di tipo Active Front End (AFE). Tale convertitore consente il controllo bidirezionale del flusso di potenza, la riduzione delle armoniche in rete e un migliore fattore di potenza. La validazione dell’intero sistema è stata effettuata attraverso simulazioni numeriche, le quali hanno confermato la validità dell’approccio progettuale adottato e l’efficacia delle soluzioni proposte. I risultati ottenuti dimostrano la capacità dell’azionamento di operare in condizioni gravose mantenendo elevati livelli di efficienza, stabilità e affidabilità. Il lavoro svolto contribuisce allo sviluppo di soluzioni avanzate per il controllo e l’alimentazione di motori DC impiegati in contesti industriali ad alta severità operativa, quali impianti di sollevamento,di trasporto funiviario oppure di trazione elettrica ferroviaria.
Azionamento e controllo di un motore DC per applicazioni heavy duty con high damping inertia.
PERLI, EDOARDO
2024/2025
Abstract
This thesis aims to analyze, design, and implement an electrical drive system for direct current (DC) motors intended for heavy-duty applications, characterized by mechanical loads with high inertia. These operating conditions present significant challenges in terms of torque control, dynamic stability, and system responsiveness. In the initial phase, a theoretical analysis of the DC motor characteristics and the modeling of the variable mass mechanical load was conducted. Based on this model, a closed-loop control system was developed, utilizing PI controllers and compensation techniques, with the goal of ensuring high performance in terms of speed regulation accuracy and robustness against external disturbances and load variations. Subsequently, an Active Front End (AFE) converter was designed and integrated into the system. This converter allows for bidirectional power flow control, harmonic reduction in the grid, and improved power factor. The validation of the entire system was carried out through numerical simulations, which confirmed the validity of the adopted design approach and the effectiveness of the proposed solutions. The results demonstrate the drive’s ability to operate under demanding conditions while maintaining high levels of efficiency, stability, and reliability. This work contributes to the development of advanced solutions for the control and powering of DC motors used in industrial applications with high operational severity, such as lifting systems, cable transportation systems, and electric railway traction.| File | Dimensione | Formato | |
|---|---|---|---|
|
Perli_Edoardo.pdf
Accesso riservato
Dimensione
1.87 MB
Formato
Adobe PDF
|
1.87 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/89184