The use of audio signals as a means of transmitting digital information represents an effective solution in IoT contexts, especially when radio communication is not possible or desirable. However, ambient recording may capture private conversations or sensitive information, raising important privacy concerns, particularly in light of the General Data Protection Regulation (GDPR). In this context, this thesis analyzes techniques for the selective removal of vocal content from audio signals, aiming to protect user privacy without compromising the signal quality for other uses. The case study focuses on the TISCODE system, which transmits data through short audio signals captured by microphones on mobile devices. By employing audio source separation models based on neural networks, specifically the Demucs model, it was possible to isolate and remove the vocal component from tracks contaminated by noise. The signals were analyzed in realistic scenarios, simulating various intensities and types of disturbance. The results show an overall improvement in the recognition of TISCODE signals after the denoising process. Finally, a threshold was proposed for the recognition parameters to reduce false positives, balancing reliability and data protection. This approach demonstrates how it is possible to combine technical performance with privacy protection requirements in audio systems based on smart devices.
L’uso di segnali audio come mezzo di trasmissione per informazioni digitali rappresenta una soluzione efficace in contesti IoT, specialmente quando non è possibile o desiderabile ricorrere a comunicazioni via radio. Tuttavia, la registrazione ambientale può intercettare conversazioni private o informazioni sensibili, sollevando importanti problematiche legate alla privacy, in particolare alla luce del Regolamento Generale sulla Protezione dei Dati (GDPR). In questo contesto, questa tesi analizza tecniche di rimozione selettiva del contenuto vocale da segnali audio, al fine di proteggere la privacy degli utenti senza compromettere la qualità del segnale per altri utilizzi. Il caso di studio è rappresentato dal sistema TISCODE, che trasmette dati tramite brevi segnali audio captati da microfoni di dispositivi mobili. Attraverso l'impiego di modelli di separazione delle sorgenti audio basati su reti neurali, in particolare il modello Demucs, è stato possibile isolare e rimuovere la componente vocale da tracce contaminate da rumore. I segnali sono stati analizzati in scenari realistici, simulando diverse intensità e tipologie di disturbo. I risultati evidenziano un miglioramento complessivo nel riconoscimento dei segnali TISCODE dopo il processo di denoising. Infine, è stata proposta una soglia sui parametri di riconoscimento per ridurre i falsi positivi, bilanciando affidabilità e protezione dei dati. Questo approccio mostra come sia possibile coniugare prestazioni tecniche ed esigenze di tutela della privacy nei sistemi audio basati su dispositivi intelligenti.
Tecniche di tutela della privacy in sistemi IoT: rimozione selettiva del contenuto vocale da segnali audio
ROMANIELLO FERRARI, DIEGO GERARDO
2024/2025
Abstract
The use of audio signals as a means of transmitting digital information represents an effective solution in IoT contexts, especially when radio communication is not possible or desirable. However, ambient recording may capture private conversations or sensitive information, raising important privacy concerns, particularly in light of the General Data Protection Regulation (GDPR). In this context, this thesis analyzes techniques for the selective removal of vocal content from audio signals, aiming to protect user privacy without compromising the signal quality for other uses. The case study focuses on the TISCODE system, which transmits data through short audio signals captured by microphones on mobile devices. By employing audio source separation models based on neural networks, specifically the Demucs model, it was possible to isolate and remove the vocal component from tracks contaminated by noise. The signals were analyzed in realistic scenarios, simulating various intensities and types of disturbance. The results show an overall improvement in the recognition of TISCODE signals after the denoising process. Finally, a threshold was proposed for the recognition parameters to reduce false positives, balancing reliability and data protection. This approach demonstrates how it is possible to combine technical performance with privacy protection requirements in audio systems based on smart devices.| File | Dimensione | Formato | |
|---|---|---|---|
|
Romaniello_Diego.pdf
accesso aperto
Dimensione
1.45 MB
Formato
Adobe PDF
|
1.45 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/89302