Particle detectors, properly defined as scintillators, are materials that emit light when struck by ionizing radiation. Thanks to their ability to detect and accurately measure incoming particles, these devices are widely used in various applications, from high-energy physics to medical imaging. Scintillators can be classified into different categories based on their composition and physical properties. In particular, the development of organic scintillators is constantly growing and improving, partly due to their advantages in terms of relatively low cost, fast response time, adaptability to different detection systems, and flexibility. Special interest has arisen in the use of polysiloxane-based detectors, also known as silicone, compared to scintillators made from carbon-based polymer matrices. Indeed, this hybrid-structure polymer, characterized by the siloxane bond (Si–O–Si), ensures improved mechanical and chemical properties. At the same time, to meet the demand for scintillators with increasingly complex sizes and shapes across different technological fields, the research and exploitation of specific additive manufacturing techniques represent an effective solution. In particular, Digital Light Processing (DLP) technology allows for achieving a rather high printing resolution through the layer-by-layer polymerization of a photocurable resin using a projector. The aim of this study is therefore to synthesize photocurable polysiloxane resins through a non-hydrolytic sol-gel process, featuring a significant content of acrylic groups, necessary for cross-linking upon light excitation in the ultraviolet range, and phenyl groups, aimed at enhancing the material's intrinsic fluorescence effect and improving the solubility of the added components responsible for photopolymerization and scintillation. The synthesized resins and the cross-linked samples are analyzed using photoreology techniques, such as UV-VIS and IR spectroscopy, by observing possible differences between the reaction product without additional additives and the "doped" product. At the same time, the reaction kinetics are also studied, as they are strong indicators of any necessary adjustments to the synthesis process and of important factors to consider when setting up new synthesis tests. Once a potentially valid resin sample is obtained, after cross-linking in specially designed molds with predefined shapes suitable for the following study phases, its transparency and light yield characteristics are evaluated, in order to establish its efficiency as a scintillator. The study concludes with the selection of the resins that best meet the conditions for achieving the set objectives, with the ultimate goal of using them to create complex three-dimensional structures through additive manufacturing. Therefore, for each selected resin and the corresponding silicone obtained by photopolymerization, their printability and mechanical properties, such as tensile strength and ductility, are evaluated.
I rivelatori di particelle, propriamente definiti scintillatori, sono materiali che emettono luce quando vengono colpiti da radiazioni ionizzanti. Grazie alla loro capacità di rivelare e misurare con precisione le particelle incidenti, questi dispositivi sono ampiamente utilizzati in diverse applicazioni, dalla fisica delle alte energie all’imaging medico. Gli scintillatori possono essere classificati in diverse categorie in base alla loro composizione e alle proprietà fisiche: nello specifico, lo sviluppo di scintillatori organici è in costante crescita e miglioramento, anche grazie ai loro vantaggi relativamente i costi contenuti, la velocità di reazione alla sollecitazione, l’adattabilità a diversi sistemi di rilevamento e la flessibilità. In particolare, si è manifestato un certo interesse nell’utilizzo di rivelatori a base di polisilossano, noto anche come silicone, rispetto a scintillatori costituiti da polimeri di matrice carboniosa. Di fatto, il suddetto polimero di struttura ibrida, caratterizzato dal legame silossano Si – O – Si, garantisce proprietà meccaniche e chimiche migliori. Allo stesso tempo, per soddisfare le richieste di scintillatori di dimensioni e forme sempre più complesse da parte di diversi settori tecnologici, la ricerca e lo sfruttamento di precise tecniche di manifattura additiva rappresenta una soluzione efficace. In particolare, la tecnologia di Digital Light Processing (DLP) consente di ottenere una risoluzione di stampa piuttosto elevata attraverso la polimerizzazione a strati su un proiettore di una resina fotopolimerica. L’obiettivo dello studio pertanto consiste nel sintetizzare delle resine polisilossaniche fotocurabili, attraverso il processo di sol-gel non idrolitico, che presentino un contenuto considerevole di gruppi acrilici, necessari per la reticolazione a seguito di eccitazione luminosa nel campo dell’ultravioletto, e di gruppi fenilici, volti ad incrementare l’effetto di fluorescenza intrinseca del materiale e a migliorare la solubilità degli additivi aggiunti, responsabili della fotoreticolazione e della scintillazione del materiale. Le resine così sintetizzate ed i campioni reticolati vengono analizzati attraverso tecniche di fotoreologia, quali spettroscopia UV-VIS e IR, osservando eventuali differenze tra il prodotto di reazione privo di additivi aggiunti e il prodotto ‘drogato’. Allo stesso tempo, anche la cinetica di reazione viene studiata, in quanto forte indicatore sia di eventuali correzioni da apportare al processo di sintesi del prodotto considerato, che di eventuali accorgimenti da considerare per la messa a punto di nuove prove di sintesi. Una volta ottenuto un campione di resina potenzialmente valida, a seguito della reticolazione in appositi stampi di forma prestabilita e funzionale alle successive fasi finali dello studio, ne vengono valutate le caratteristiche di trasparenza e di resa in luce, al fine di stabilirne l’efficienza in qualità di scintillatori. Lo studio termina con la selezione delle resine che maggiormente si prestano a soddisfare le condizioni per cui risultano idonee al raggiungimento degli obiettivi prefissati, con lo scopo finale di essere impiegate per la realizzazione di strutture tridimensionali complesse attraverso manifattura additiva. Pertanto, per ogni resina scelta ed il corrispondente silicone ottenuto per fotoreticolazione, ne vengono valutate rispettivamente la stampabilità e le proprietà meccaniche, quali resistenza a trazione e duttilità.
Sintesi via sol-gel non idrolitico di resine siliconiche per stampa 3D di rivelatori di particelle
PAPIRI, SIMONE
2024/2025
Abstract
Particle detectors, properly defined as scintillators, are materials that emit light when struck by ionizing radiation. Thanks to their ability to detect and accurately measure incoming particles, these devices are widely used in various applications, from high-energy physics to medical imaging. Scintillators can be classified into different categories based on their composition and physical properties. In particular, the development of organic scintillators is constantly growing and improving, partly due to their advantages in terms of relatively low cost, fast response time, adaptability to different detection systems, and flexibility. Special interest has arisen in the use of polysiloxane-based detectors, also known as silicone, compared to scintillators made from carbon-based polymer matrices. Indeed, this hybrid-structure polymer, characterized by the siloxane bond (Si–O–Si), ensures improved mechanical and chemical properties. At the same time, to meet the demand for scintillators with increasingly complex sizes and shapes across different technological fields, the research and exploitation of specific additive manufacturing techniques represent an effective solution. In particular, Digital Light Processing (DLP) technology allows for achieving a rather high printing resolution through the layer-by-layer polymerization of a photocurable resin using a projector. The aim of this study is therefore to synthesize photocurable polysiloxane resins through a non-hydrolytic sol-gel process, featuring a significant content of acrylic groups, necessary for cross-linking upon light excitation in the ultraviolet range, and phenyl groups, aimed at enhancing the material's intrinsic fluorescence effect and improving the solubility of the added components responsible for photopolymerization and scintillation. The synthesized resins and the cross-linked samples are analyzed using photoreology techniques, such as UV-VIS and IR spectroscopy, by observing possible differences between the reaction product without additional additives and the "doped" product. At the same time, the reaction kinetics are also studied, as they are strong indicators of any necessary adjustments to the synthesis process and of important factors to consider when setting up new synthesis tests. Once a potentially valid resin sample is obtained, after cross-linking in specially designed molds with predefined shapes suitable for the following study phases, its transparency and light yield characteristics are evaluated, in order to establish its efficiency as a scintillator. The study concludes with the selection of the resins that best meet the conditions for achieving the set objectives, with the ultimate goal of using them to create complex three-dimensional structures through additive manufacturing. Therefore, for each selected resin and the corresponding silicone obtained by photopolymerization, their printability and mechanical properties, such as tensile strength and ductility, are evaluated.| File | Dimensione | Formato | |
|---|---|---|---|
|
Papiri Simone.pdf
Accesso riservato
Dimensione
2.24 MB
Formato
Adobe PDF
|
2.24 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/89604