Medical image segmentation is a critical task in clinical diagnostics, requiring high precision and reliability. Traditional manual segmentation is labor intensive, prompting the need for automated approaches. While Transformer-based architectures have dominated recent advances, their limitations in scalability and computational efficiency have motivated exploration of alternative models. This paper investigates Mamba, a novel class of Selective State Space Models, as a promising alternative for medical image segmentation. Two Mamba-based architectures U-Mamba and Swin-UMamba have been evaluated across multiple polyp segmentation datasets, with custom data augmentation techniques applied to improve generalization and mitigate overfitting. Results demonstrate that Mamba models offer competitive performance, with Swin-UMamba approaching state-of-the-art accuracy. Thanks to their efficiency, adaptability, and compact size, these models are well-suited for emerging medical applications. Overall, the findings suggest that Mamba architectures represent a promising direction for future research in medical computer vision.
La segmentazione delle immagini mediche è un compito fondamentale nella diagnostica clinica, che richiede alta precisione e affidabilità. La segmentazione manuale è un processo lavorativamente intenso, rendendo necessarie soluzioni automatizzate. Sebbene i recenti progressi nel campo siano stati dominati da architetture basate su Transformer, le loro limitazioni in termini di scalabilità ed efficienza computazionale hanno spinto alla ricerca di modelli alternativi. Questo studio analizza Mamba, una nuova classe di modelli Selective State Space, come alternativa promettente per la segmentazione di immagini mediche. Sono state valutate U-Mamba e Swin-UMamba, due architetture Mamba, su diversi dataset di segmentazione di polipi, applicando tecniche dedicate di data augmentation per migliorare la generalizzazione e ridurre l’overfitting. I risultati dimostrano che i modelli Mamba offrono prestazioni competitive, con Swin-UMamba che si avvicina allo stato dell’arte. Grazie alla loro efficienza, adattabilità e dimensioni compatte, questi modelli risultano adatti a nuove applicazioni in ambito medico. I risultati suggeriscono che le architetture Mamba rappresentano una direzione promettente per la ricerca futura nella computer vision applicata alla medicina.
Medical Image Segmentation with Selective State Space Models
LEVORATO, ALBERTO
2024/2025
Abstract
Medical image segmentation is a critical task in clinical diagnostics, requiring high precision and reliability. Traditional manual segmentation is labor intensive, prompting the need for automated approaches. While Transformer-based architectures have dominated recent advances, their limitations in scalability and computational efficiency have motivated exploration of alternative models. This paper investigates Mamba, a novel class of Selective State Space Models, as a promising alternative for medical image segmentation. Two Mamba-based architectures U-Mamba and Swin-UMamba have been evaluated across multiple polyp segmentation datasets, with custom data augmentation techniques applied to improve generalization and mitigate overfitting. Results demonstrate that Mamba models offer competitive performance, with Swin-UMamba approaching state-of-the-art accuracy. Thanks to their efficiency, adaptability, and compact size, these models are well-suited for emerging medical applications. Overall, the findings suggest that Mamba architectures represent a promising direction for future research in medical computer vision.| File | Dimensione | Formato | |
|---|---|---|---|
|
Levorato_Alberto.pdf
accesso aperto
Dimensione
2.15 MB
Formato
Adobe PDF
|
2.15 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/89706