This thesis investigates the phosphoinositide–Rho GTPase signaling network with the goal of developing a mathematical model capable of reproducing the mixed-mode oscillations of Rho observed experimentally, in order to better understand how cell contractility is regulated by a nonlinear signaling network. Starting from the incoherent feedforward loop proposed by Tong et al. to explain the fast component of these oscillations, this work shows that such a structure is insufficient to sustain periodic behavior. Several modifications are introduced, including feedback loops inspired by experimental observations and nonlinear terms based on Hill-type kinetics. Four distinct models are proposed and analyzed using phase plane analysis and the Routh–Hurwitz stability criterion. Despite these modifications, none of the models exhibited a stable limit cycle, an unstable equilibrium corresponding to sustained oscillatory behavior. Instead, all system trajectories converged toward a stable steady state, suggesting that the simplified ordinary differential equations used in this study fail to capture the complex dynamics observed in vivo. Future directions are discussed, including the incorporation of time delays, spatial dynamics and stochastic fluctuations to better reflect the biological complexity of the system.
In questa tesi viene approfondito lo studio della rete di segnalazione fosfoinositide–Rho GTPasi, con l’obiettivo di sviluppare un modello matematico in grado di riprodurre le oscillazioni a modalità mista di Rho osservate sperimentalmente, al fine di chiarire in che modo la contrattilità cellulare sia regolata da una rete di segnalazione non lineare. Partendo dal circuito di feedforward incoerente proposto da Tong et al. per spiegare la componente veloce di tali oscillazioni, si dimostra che questa struttura non è sufficiente a sostenere un comportamento periodico. Sono quindi state introdotte diverse modifiche alla formulazione iniziale, tra cui anelli di retroazione ispirati da osservazioni sperimentali e termini non lineari basati su cinetiche di tipo Hill. Quattro diversi modelli sono stati proposti e analizzati attraverso lo studio del piano di fase e l’applicazione del criterio di stabilità di Routh–Hurwitz. Nonostante tali modifiche, nessuno dei modelli ha mostrato la presenza di un ciclo limite stabile, ossia un equilibrio instabile associato a un comportamento oscillatorio. Al contrario, tutte le traiettorie del sistema convergono verso uno stato stazionario stabile, suggerendo che le equazioni differenziali ordinarie semplificate adottate in questo lavoro non riescono a catturare la complessità dinamica osservata in vivo. Vengono infine discusse possibili prospettive future, tra cui l’inclusione di ritardi temporali, dinamiche spaziali e fluttuazioni stocastiche, al fine di rappresentare più fedelmente la complessità biologica del sistema.
The fast component of Rho mixed-mode oscillations: a critical analysis of Tong et al. and the failure of alternative approaches
VAROTTO, CAMILLA
2024/2025
Abstract
This thesis investigates the phosphoinositide–Rho GTPase signaling network with the goal of developing a mathematical model capable of reproducing the mixed-mode oscillations of Rho observed experimentally, in order to better understand how cell contractility is regulated by a nonlinear signaling network. Starting from the incoherent feedforward loop proposed by Tong et al. to explain the fast component of these oscillations, this work shows that such a structure is insufficient to sustain periodic behavior. Several modifications are introduced, including feedback loops inspired by experimental observations and nonlinear terms based on Hill-type kinetics. Four distinct models are proposed and analyzed using phase plane analysis and the Routh–Hurwitz stability criterion. Despite these modifications, none of the models exhibited a stable limit cycle, an unstable equilibrium corresponding to sustained oscillatory behavior. Instead, all system trajectories converged toward a stable steady state, suggesting that the simplified ordinary differential equations used in this study fail to capture the complex dynamics observed in vivo. Future directions are discussed, including the incorporation of time delays, spatial dynamics and stochastic fluctuations to better reflect the biological complexity of the system.| File | Dimensione | Formato | |
|---|---|---|---|
|
Varotto_Camilla.pdf
accesso aperto
Dimensione
3.98 MB
Formato
Adobe PDF
|
3.98 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/89720