In recent years, interest in the use of phytopreparations and plant-derived products has significantly increased, thanks to their proven therapeutic effects and the lower incidence of side effects compared to synthetic drugs. However, most plant compounds present pharmacokinetic limitations: substances such as phenolic compounds, essential oils, fatty acids, and carotenoids are poorly water-soluble, unstable under physiological conditions, and rapidly metabolized and excreted by the body. To overcome these issues and ensure the full efficacy of these phytocompounds, encapsulation in liposomes has emerged as one of the most promising solutions among various active ingredient delivery systems. Liposomes are spherical vesicles composed of one or more phospholipid bilayers, capable of encapsulating both hydrophilic and lipophilic compounds, thereby protecting them from potential enzymatic and chemical degradation and improving their bioavailability. Thanks to these properties, liposomes are increasingly being used for the delivery of plant extracts. This thesis is structured in two parts. The first part aims to analyze the characteristics of liposomal systems, particularly as carriers for plant extracts, and to evaluate their effectiveness through a review of the literature on various nanoparticulate formulations. The second part presents a study conducted on five different formulations of liposomes loaded with inulin-biotin-curcumin micelles, in collaboration with the University of Brescia. The goal was to evaluate the encapsulation efficiency (EE%), stability, and mass yield of the various preparations. To the most promising formulation, the non-ionic surfactant TWEEN80 was added to improve the elasticity, deformability, and incorporation efficiency of the liposomes. All formulations were prepared using the thin layer evaporation technique and characterized by Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). Overall, the liposomes demonstrated good EE%, suitable sizes, and an adequate polydispersity index. Subsequently, a long-term stability study (over a seven-week period) was conducted on two liposomal formulations, both composed of HSPC and cholesterol, with two different types of PEG: PEG5kDa-DSPE and PEG2kDa-DSPE. The inclusion of a hydrophilic polymer such as PEG in the formulation helps to stabilize liposomes in solution. The potential influence of polymer size on the colloidal stability of the formulations over a seven-week period was evaluated. Both formulations were prepared using the thin layer evaporation technique and characterized by Dynamic Light Scattering (DLS).
Negli ultimi anni, l’interesse verso utilizzo di fitopreparati e prodotti di derivazione vegetale è notevolmente aumentato grazie ai loro provati effetti terapeutici e alla minore incidenza di effetti collaterali rispetto ai farmaci di sintesi. Tuttavia, la maggior parte dei composti vegetali presenta delle limitazioni a livello farmacocinetico: sostanze come composti fenolici, oli essenziali, acidi grassi e carotenoidi sono poco solubili in acqua, instabili a condizioni fisiologiche, rapidamente metabolizzati ed escreti dall’organismo. Per migliorare queste problematiche e garantire una completa efficacia di questi fitocomposti, l’incapsulazione di queste sostanze in liposomi si è affermata come una delle soluzioni più promettenti tra i vari sistemi di veicolazione di principi attivi. I liposomi sono vescicole sferiche costituite da uno o più doppi strati fosfolipidici, capaci di incapsulare sia composti idrofili che lipofili, proteggendoli da possibili degradazioni enzimatiche e chimiche e migliorandone la biodisponibilità. Grazie a queste proprietà, i liposomi vengono sempre più impiegati nella veicolazione di estratti vegetali. Questo lavoro di tesi si articola in una prima parte dove si propone di analizzare le caratteristiche dei sistemi liposomiali, in particolare come veicoli per estratti vegetali e di valutarne l’efficacia attraverso studi della letteratura effettuati sulle varie formulazioni nanoparticellari. Nella seconda parte si riporta uno studio svolto su cinque diverse formulazioni di liposomi caricati di micelle di inulina-biotina-curcumina, in collaborazione con l’Università degli Studi di Brescia. Lo scopo è stato quello di valutare l’EE%, la stabilità e la resa in massa delle varie preparazioni. Alla formulazione più promettente è stato aggiunto il tensioattivo non ionico TWEEN80 per migliorare l’elasticità, la deformabilità e l’efficienza di incorporazione dei liposomi. Tutte le formulazioni sono state ottenute con la tecnica del ‘thin layer evaporation’ e sono state caratterizzate con Dynamic Light Scattering (DLS) e microscopio elettronico a trasmissione (TEM). Nel complesso i liposomi hanno dimostrato una buona EE%, dimensioni idonee e un grado di polidispersione adeguato. In seguito, è stato svolto uno studio di stabilità a lungo termine (in un periodo di sette settimane) di due formulazioni liposomiali, entrambe costituite da HSPC e colesterolo, con due tipologie di PEG differenti: PEG5kDa-DSPE e PEG2kDa-DSPE. L’inserimento nella formulazione di un polimero idrofilo come il PEG permette di stabilizzare i liposomi in soluzione. È stata valutata una eventuale influenza delle dimensioni del polimero sulla stabilità colloidale delle formulazioni per un periodo di sette settimane. Entrambe le formulazioni sono state ottenute con la tecnica del ‘thin layer evaporation’ e sono state caratterizzate con Dynamic Light Scattering (DLS).
Utilizzo di liposomi per la veicolazione di derivati di origine vegetale
CORICA, ILENIA
2024/2025
Abstract
In recent years, interest in the use of phytopreparations and plant-derived products has significantly increased, thanks to their proven therapeutic effects and the lower incidence of side effects compared to synthetic drugs. However, most plant compounds present pharmacokinetic limitations: substances such as phenolic compounds, essential oils, fatty acids, and carotenoids are poorly water-soluble, unstable under physiological conditions, and rapidly metabolized and excreted by the body. To overcome these issues and ensure the full efficacy of these phytocompounds, encapsulation in liposomes has emerged as one of the most promising solutions among various active ingredient delivery systems. Liposomes are spherical vesicles composed of one or more phospholipid bilayers, capable of encapsulating both hydrophilic and lipophilic compounds, thereby protecting them from potential enzymatic and chemical degradation and improving their bioavailability. Thanks to these properties, liposomes are increasingly being used for the delivery of plant extracts. This thesis is structured in two parts. The first part aims to analyze the characteristics of liposomal systems, particularly as carriers for plant extracts, and to evaluate their effectiveness through a review of the literature on various nanoparticulate formulations. The second part presents a study conducted on five different formulations of liposomes loaded with inulin-biotin-curcumin micelles, in collaboration with the University of Brescia. The goal was to evaluate the encapsulation efficiency (EE%), stability, and mass yield of the various preparations. To the most promising formulation, the non-ionic surfactant TWEEN80 was added to improve the elasticity, deformability, and incorporation efficiency of the liposomes. All formulations were prepared using the thin layer evaporation technique and characterized by Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). Overall, the liposomes demonstrated good EE%, suitable sizes, and an adequate polydispersity index. Subsequently, a long-term stability study (over a seven-week period) was conducted on two liposomal formulations, both composed of HSPC and cholesterol, with two different types of PEG: PEG5kDa-DSPE and PEG2kDa-DSPE. The inclusion of a hydrophilic polymer such as PEG in the formulation helps to stabilize liposomes in solution. The potential influence of polymer size on the colloidal stability of the formulations over a seven-week period was evaluated. Both formulations were prepared using the thin layer evaporation technique and characterized by Dynamic Light Scattering (DLS).| File | Dimensione | Formato | |
|---|---|---|---|
|
Corica_Ilenia .pdf
accesso aperto
Dimensione
2.11 MB
Formato
Adobe PDF
|
2.11 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/89808