In the field of aeronautics, the Balanced Field Length (BFL) is defined as the condition in which, with one engine inoperative (OEI), the takeoff distance for continued takeoff and the takeoff distance for aborted takeoff, after reaching a specific critical speed, become equal. Its implication lies in the need to determine, alongside the Factorized Takeoff Distance (TOD+15%), the Takeoff Field Length (TOFL), in accordance with the airworthiness standards of EASA (CS-25) and the FAA (FAR Part 25). The methods currently available in the literature for calculating the BFL are of an empirical-theoretical nature, operating under strong simplifying assumptions, or computational-numerical, utilizing expensive iterative methods. Starting from the equations provided by Dennis Lucht in "Numerical and Analytical Takeoff Field Length Calculations for Jet Aircrafts" (2022), the terms involved in the Balanced Field Length are now determined using exact methods of analytical, algebraic, and geometrical types, reducing the algorithmic implementation to the sole resolution of the nonlinear function, which has as its unknown the balanced failure time (EF) of the engine. This study compares the numerical results of Lucht regarding the BFL, for the Airbus A320 case, and with the approximate theory of Egbert Torenbeek. Additionally, Chapter 4 proceeds with the mathematical modeling of the takeoff equations considering time-varying quantities that are typically neglected (angle of attack and weight), for the former of which a closed-form solution is also proposed.
In campo aeronautico, la Lunghezza di Campo Bilanciata (BFL) è definita come la condizione per la quale, con un motore in avaria (OEI), le distanze di decollo continuato e di decollo abortito, successivamente al raggiungimento di una specifica velocità critica, si equivalgono. La sua implicazione risiede nella necessità di determinare, congiuntamente alla Takeoff Distance Fattorizzata (TOD+15%), la Takeoff Field Length (TOFL), compatibilmente agli standard di aeronavigabilità EASA (CS-25) e FAA (FAR Part 25). I metodi attualmente reperibili in letteratura per il calcolo della BFL sono di natura: empirico-teorica, operanti sotto forti ipotesi semplificative; computazionale-numerica, facenti uso di onerosi metodi iterativi. Partendo dalle equazioni messe a disposizione da Dennis Lucht in "Numerical and Analytical Takeoff Field Length Calculations for Jet Aircrafts"(2022), i termini presenti nella Balanced Field Length vengono ora determinati secondo metodi esatti di tipologia analitica, algebrica e geometrica, riducendo l'implementazione algoritmica alla sola risoluzione della funzione non lineare, avente per incognita l'istante temporale bilanciato di guasto al motore (EF). Il presente studio conduce un confronto con i risultati numerici di Lucht attinenti alla BFL, relativamente alla casistica dell'Airbus A320, e con la teoria approssimata di Egbert Torenbeek. Addizionalmente, il capitolo 4 procede nella modellazione matematica delle equazioni di decollo in presenza e considerazione di grandezze tempo-varianti normalmente trascurate (angolo di attacco e peso), per la prima delle quali viene altresì avanzata una proposta di soluzione in forma chiusa.
Calcolo analitico della lunghezza di campo bilanciata
MARANGON, PIERPAOLO
2024/2025
Abstract
In the field of aeronautics, the Balanced Field Length (BFL) is defined as the condition in which, with one engine inoperative (OEI), the takeoff distance for continued takeoff and the takeoff distance for aborted takeoff, after reaching a specific critical speed, become equal. Its implication lies in the need to determine, alongside the Factorized Takeoff Distance (TOD+15%), the Takeoff Field Length (TOFL), in accordance with the airworthiness standards of EASA (CS-25) and the FAA (FAR Part 25). The methods currently available in the literature for calculating the BFL are of an empirical-theoretical nature, operating under strong simplifying assumptions, or computational-numerical, utilizing expensive iterative methods. Starting from the equations provided by Dennis Lucht in "Numerical and Analytical Takeoff Field Length Calculations for Jet Aircrafts" (2022), the terms involved in the Balanced Field Length are now determined using exact methods of analytical, algebraic, and geometrical types, reducing the algorithmic implementation to the sole resolution of the nonlinear function, which has as its unknown the balanced failure time (EF) of the engine. This study compares the numerical results of Lucht regarding the BFL, for the Airbus A320 case, and with the approximate theory of Egbert Torenbeek. Additionally, Chapter 4 proceeds with the mathematical modeling of the takeoff equations considering time-varying quantities that are typically neglected (angle of attack and weight), for the former of which a closed-form solution is also proposed.| File | Dimensione | Formato | |
|---|---|---|---|
|
Marangon_Pierpaolo.pdf
accesso aperto
Dimensione
1.55 MB
Formato
Adobe PDF
|
1.55 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/89927