This thesis aims to clearly and concisely explore the fundamental phenomena underlying superconductivity, with particular focus on quantum locking and its potential applications in technological and aerospace fields. After an introductory overview, the work delves into the physics of superconductors, analyzing the theoretical and experimental principles that explain zero electrical resistance, Cooper pairs, the distinction between Type I and Type II superconductors, the Meissner effect, and related quantum phenomena such as quantum locking and Lenz's law. The role of Josephson junctions and SQUIDs is also discussed as examples of devices exploiting superconductivity for extremely precise measurement applications. The second part traces the historical evolution of research, from the pioneering discoveries to today’s high-temperature superconductors (HTS), highlighting how these materials are progressively expanding the boundaries of current technologies. Notable examples of applications are presented, including Maglev trains, the Lexus hoverboard, and magnetic confinement systems. Finally, the thesis examines future scenarios and development prospects, suggesting possible innovations such as electromagnetic launch platforms, superconducting-enhanced magnetoplasmadynamic propulsion. The ultimate goal is to provide an overview that may inspire further studies and reflections on the crucial role of superconductors in driving the transition towards more efficient, sustainable, and advanced technologies.

La presente tesi si propone di esplorare in modo chiaro ed essenziale i fenomeni alla base della superconduttività, con particolare attenzione al quantum locking e alle sue possibili applicazioni in ambito tecnologico e aerospaziale. Dopo una prima parte introduttiva, viene approfondita la fisica dei superconduttori, analizzando i principi teorici e sperimentali che spiegano la resistenza nulla, le coppie di Cooper, la distinzione tra superconduttori di tipo I e tipo II, l’effetto Meissner e i fenomeni quantistici connessi, come il quantum locking e la legge di Lenz. Viene inoltre discusso il ruolo delle giunzioni Josephson e degli SQUID come esempi di dispositivi che sfruttano la superconduttività per applicazioni di misura estremamente precise. Nella seconda parte si ripercorre l’evoluzione storica della ricerca, dalle prime scoperte fino agli attuali superconduttori ad alta temperatura critica (HTS), evidenziando come questi materiali stiano progressivamente ampliando le frontiere delle tecnologie esistenti. Vengono presentati esempi significativi di applicazioni, come i treni Maglev, l’hoverboard Lexus e i sistemi di confinamento magnetico. Infine, la tesi si concentra su scenari futuri e prospettive di sviluppo, ipotizzando possibili innovazioni come piattaforme di lancio elettromagnetiche, propulsione magnetoplasmodinamica ottimizzata con superconduttori. L’obiettivo è offrire una panoramica che possa stimolare ulteriori studi e riflessioni sul ruolo cruciale dei superconduttori per la transizione verso tecnologie più efficienti, sostenibili e avanzate.

Quantum Locking e possibili applicazioni aerospaziali

MIOR, SAVERIO ANTONIO
2024/2025

Abstract

This thesis aims to clearly and concisely explore the fundamental phenomena underlying superconductivity, with particular focus on quantum locking and its potential applications in technological and aerospace fields. After an introductory overview, the work delves into the physics of superconductors, analyzing the theoretical and experimental principles that explain zero electrical resistance, Cooper pairs, the distinction between Type I and Type II superconductors, the Meissner effect, and related quantum phenomena such as quantum locking and Lenz's law. The role of Josephson junctions and SQUIDs is also discussed as examples of devices exploiting superconductivity for extremely precise measurement applications. The second part traces the historical evolution of research, from the pioneering discoveries to today’s high-temperature superconductors (HTS), highlighting how these materials are progressively expanding the boundaries of current technologies. Notable examples of applications are presented, including Maglev trains, the Lexus hoverboard, and magnetic confinement systems. Finally, the thesis examines future scenarios and development prospects, suggesting possible innovations such as electromagnetic launch platforms, superconducting-enhanced magnetoplasmadynamic propulsion. The ultimate goal is to provide an overview that may inspire further studies and reflections on the crucial role of superconductors in driving the transition towards more efficient, sustainable, and advanced technologies.
2024
Quantum Locking and potential aerospace applications
La presente tesi si propone di esplorare in modo chiaro ed essenziale i fenomeni alla base della superconduttività, con particolare attenzione al quantum locking e alle sue possibili applicazioni in ambito tecnologico e aerospaziale. Dopo una prima parte introduttiva, viene approfondita la fisica dei superconduttori, analizzando i principi teorici e sperimentali che spiegano la resistenza nulla, le coppie di Cooper, la distinzione tra superconduttori di tipo I e tipo II, l’effetto Meissner e i fenomeni quantistici connessi, come il quantum locking e la legge di Lenz. Viene inoltre discusso il ruolo delle giunzioni Josephson e degli SQUID come esempi di dispositivi che sfruttano la superconduttività per applicazioni di misura estremamente precise. Nella seconda parte si ripercorre l’evoluzione storica della ricerca, dalle prime scoperte fino agli attuali superconduttori ad alta temperatura critica (HTS), evidenziando come questi materiali stiano progressivamente ampliando le frontiere delle tecnologie esistenti. Vengono presentati esempi significativi di applicazioni, come i treni Maglev, l’hoverboard Lexus e i sistemi di confinamento magnetico. Infine, la tesi si concentra su scenari futuri e prospettive di sviluppo, ipotizzando possibili innovazioni come piattaforme di lancio elettromagnetiche, propulsione magnetoplasmodinamica ottimizzata con superconduttori. L’obiettivo è offrire una panoramica che possa stimolare ulteriori studi e riflessioni sul ruolo cruciale dei superconduttori per la transizione verso tecnologie più efficienti, sostenibili e avanzate.
Fenomeno
Proprietà
Storia
Applicazioni
File in questo prodotto:
File Dimensione Formato  
Mior_Saverio_Antonio.pdf

accesso aperto

Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/89929