The main goal of this thesis is to prove Serre's duality theorem for projective schemes over algebraically closed fields. This theorem provides an isomorphism between certain cohomology vector spaces. The technical tools of modern algebraic geometry will be introduced, highlighting their formal effectiveness and contextualizing their historical affirmation. From the theory of sheaves to their application to schemes, cohomology will be explored as a fundamental tool for the formulation and proof of duality.

Lo scopo principale della tesi è dimostrare il teorema di dualità di Serre per schemi proiettivi su campi algebricamente chiusi: questa fornisce un isomorfismo tra certi spazi vettoriali in coomologia. Si introdurranno gli strumenti tecnici della geometria algebrica moderna motivandone l'efficacia formale e contestualizzando la loro affermazione storica. Dalla teoria dei fasci alla loro applicazione agli schemi, si approfondirà la coomologia come strumento cardine per la formulazione e la dimostrazione della dualità.

Dualità di Serre per schemi proiettivi

ALBANO, ANDREA
2024/2025

Abstract

The main goal of this thesis is to prove Serre's duality theorem for projective schemes over algebraically closed fields. This theorem provides an isomorphism between certain cohomology vector spaces. The technical tools of modern algebraic geometry will be introduced, highlighting their formal effectiveness and contextualizing their historical affirmation. From the theory of sheaves to their application to schemes, cohomology will be explored as a fundamental tool for the formulation and proof of duality.
2024
Serre duality for projective schemes
Lo scopo principale della tesi è dimostrare il teorema di dualità di Serre per schemi proiettivi su campi algebricamente chiusi: questa fornisce un isomorfismo tra certi spazi vettoriali in coomologia. Si introdurranno gli strumenti tecnici della geometria algebrica moderna motivandone l'efficacia formale e contestualizzando la loro affermazione storica. Dalla teoria dei fasci alla loro applicazione agli schemi, si approfondirà la coomologia come strumento cardine per la formulazione e la dimostrazione della dualità.
Schemi
Genere geometrico
Coomologia dei fasci
File in questo prodotto:
File Dimensione Formato  
Tesi_Albano_PDF_A.pdf

accesso aperto

Dimensione 799.19 kB
Formato Adobe PDF
799.19 kB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/89939