In this thesis, the historical evolution of algebra is briefly presented, starting from its origins up to the modern period, with particular emphasis on the emergence of the first algebraic structures. After a brief introduction to classical algebra, summarising the concepts and theories that allowed algebra to be defined as one of the main branches of mathematics, alongside arithmetic and geometry, the problems and studies that allowed the introduction and formalisation of group, ring, ideal and field structures are presented. Beginning with the main results of the mathematicians of the classical period, the studies on the solvability of algebraic equations, which interested mathematicians from ancient civilisations up to the 18th century and on which numerous figures were involved in research, Lagrange certainly being one of the most important, laid the foundations for the development of the theories that gave rise to modern algebra between the 19th and 20th centuries. We can say that the roots of modern algebra can be traced back to the study of solving equations, which culminated in the work of Galois, to which we owe the introduction of the concept of group. After him, other mathematicians, including Cayley, Dedekind, Kronecker and Noether, gave an abstract formalisation to the main algebraic structures, in particular those of group, ring and field, thus initiating the development process of modern algebra. In this thesis, the main historical points of this development are summarised, and then definitions and examples of the algebraic structures treated are presented, both in today's language and in the language used by the scholars of the time: once the mathematicians to be referred to in the definition of the algebraic structure in question have been chosen, the problem or idea from which their study begins is illustrated, and then the concepts, definitions and theorems obtained in the course of their analysis are presented. The aim of this work is to show that the birth and development of modern algebra can certainly be considered a turning point, not only in the theoretical field of algebra, but also in the field of applications, representing a transformation in the way of thinking and working in all of modern mathematics.
In questa tesi viene brevemente presentata l’evoluzione storica dell’algebra, a partire dalle sue origini fino al periodo moderno, con particolare attenzione alla nascita delle prime strutture algebriche. In seguito ad una breve introduzione relativa all’algebra classica, dove si trovano sintetizzati concetti e teorie che hanno permesso di definire l’algebra come uno dei rami principali della matematica, accanto all’aritmetica e alla geometria, vengono illustrati i problemi e gli studi che hanno permesso l’introduzione e la formalizzazione delle strutture di gruppo, anello, ideale e campo. A partire dai principali risultati dei matematici del periodo classico, dovuti agli studi sulla risolubilità delle equazioni algebriche, che interessarono i matematici dalle civiltà antiche fino al XVIII secolo e che videro numerose figure coinvolte nella ricerca, tra i più importanti ritroviamo certamente Lagrange, vennero gettate le basi per lo sviluppo delle teorie che hanno dato origine, tra il XIX e il XX secolo, all’algebra moderna. Possiamo dire che le radici dell’algebra moderna affondano negli studi relativi alla risoluzione delle equazioni che raggiunsero l’apice con il lavoro di Galois, a cui si deve l’introduzione del concetto di gruppo. Dopo di lui altri matematici, tra cui Cayley, Dedekind, Kronecker e Noether, diedero una formalizzazione astratta alle principali strutture algebriche, in particolare a quelle di gruppo, anello e campo, avviando il processo di sviluppo dell’algebra moderna. Nella tesi sono riassunti i principali snodi storici di tale sviluppo, quindi vengono introdotte definizioni ed esempi delle strutture algebriche trattate, sia in linguaggio odierno, sia con quello adottato dagli studiosi dell’epoca: scelti i matematici a cui far riferimento nella definizione della struttura algebrica considerata si illustrano il problema o l’idea da cui inizia il loro studio e poi si presentano concetti, definizioni e teoremi ottenuti nel corso della loro analisi. L’obiettivo di tale lavoro è la dimostrazione di come la nascita e lo sviluppo dell’algebra moderna possano essere certamente considerati una svolta non solo in campo teorico in algebra, ma anche in quello applicativo, rappresentando una trasformazione del modo di pensare ed operare in tutta la matematica moderna.
Storia dell'algebra: dalla concezione classica alla concezione moderna. La nascita delle prime strutture algebriche.
COLPO, BARBARA MARIA
2024/2025
Abstract
In this thesis, the historical evolution of algebra is briefly presented, starting from its origins up to the modern period, with particular emphasis on the emergence of the first algebraic structures. After a brief introduction to classical algebra, summarising the concepts and theories that allowed algebra to be defined as one of the main branches of mathematics, alongside arithmetic and geometry, the problems and studies that allowed the introduction and formalisation of group, ring, ideal and field structures are presented. Beginning with the main results of the mathematicians of the classical period, the studies on the solvability of algebraic equations, which interested mathematicians from ancient civilisations up to the 18th century and on which numerous figures were involved in research, Lagrange certainly being one of the most important, laid the foundations for the development of the theories that gave rise to modern algebra between the 19th and 20th centuries. We can say that the roots of modern algebra can be traced back to the study of solving equations, which culminated in the work of Galois, to which we owe the introduction of the concept of group. After him, other mathematicians, including Cayley, Dedekind, Kronecker and Noether, gave an abstract formalisation to the main algebraic structures, in particular those of group, ring and field, thus initiating the development process of modern algebra. In this thesis, the main historical points of this development are summarised, and then definitions and examples of the algebraic structures treated are presented, both in today's language and in the language used by the scholars of the time: once the mathematicians to be referred to in the definition of the algebraic structure in question have been chosen, the problem or idea from which their study begins is illustrated, and then the concepts, definitions and theorems obtained in the course of their analysis are presented. The aim of this work is to show that the birth and development of modern algebra can certainly be considered a turning point, not only in the theoretical field of algebra, but also in the field of applications, representing a transformation in the way of thinking and working in all of modern mathematics.| File | Dimensione | Formato | |
|---|---|---|---|
|
Colpo_BarbaraMaria.pdf
accesso aperto
Dimensione
24.92 MB
Formato
Adobe PDF
|
24.92 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/89945