The following final report deals with an in-depth study of the idler shaft of a two-stage reducer, sized during the course "Machine Design 1", using finite element method (FEM) through the SolidWorks Simulation 2022 software. The main objective is to evaluate the behavior of the shaft in terms of fatigue resistance and deformability. The discussion begins with a theoretical introduction to the finite element method, and then continues with two preliminary practical exercises: a planar frame subject to combined loads and a plate with a central hole subject to traction. In the first case, displacements, constraint reactions and the main stress diagrams are calculated, with relative verification of the structural sections according to the allowable stress method. In the second application, exploiting the geometric symmetries present, the stress concentration factor referred to the gross area (Ktg) is determined following a mesh sensitivity analysis, whose convergent value is compared with the known data from the literature obtained from Peterson’s manual. Once the introductory phase is completed, the shaft analysis is carried out. The Kt are determined, also in this case by performing a mesh sensitivity analysis, for some critical sections in terms of fatigue life and they are compared with the theoretical reference values for similar geometries. The last part of the report is dedicated to verifying the deformability of the shaft, comparing the results in terms of deflections and rotations of two FEM models: a real three-dimensional one and a simplified one-dimensional cylindrical beam. The results obtained from both models are compared with the analytical values, which use beam theory concerning the integration of the elastic line.
La seguente relazione finale tratta un approfondimento riguardante l’albero di rinvio di un riduttore bistadio, dimensionato durante il corso di ”Costruzioni di macchine 1”, utilizzando l’analisi agli elementi finiti (FEM) attraverso il software SolidWorks Simulation 2022. L’obiettivo principale è quello di valutare il comportamento dell’albero in termini di resistenza a fatica e deformabilità. La trattazione prende avvio con un’introduzione teorica al metodo degli elementi finiti, per poi proseguire con due esercitazioni pratiche preliminari: un telaio piano soggetto a carichi combinati ed una piastra con foro centrale sollecitata a trazione. Nel primo caso si calcolano spostamenti, reazioni vincolari ed i principali diagrammi di sollecitazione, con relativa verifica delle sezioni strutturali secondo il metodo delle tensioni ammissibili. Nella seconda applicazione, sfruttando le simmetrie geometriche presenti, si determina il fattore di concentrazione delle tensioni riferito all’area lorda (Ktg) a seguito di un’analisi di sensibilità della mesh, il cui valore convergente viene confrontato con i dati noti della letteratura ottenuti dal manuale Peterson. Completata la fase introduttiva, si passa all’analisi dell’albero. Si determinano i Kt, anche in questo caso eseguendo un’analisi di sensibilità della mesh, di alcune sezioni critiche in termini di vita a fatica e vengono confrontati con i valori teorici di riferimento per geometrie simili. L’ultima parte della relazione è dedicata alla verifica della deformabilità dell’albero, confrontando i risultati in termini di frecce e rotazioni di due modelli FEM: uno tridimensionale reale ed uno semplificato monodimensionale a trave cilindrica. I risultati ottenuti da entrambi i modelli sono messi a confronto con i valori analitici, i quali utilizzano la teoria della trave riguardante l’integrazione della linea elastica.
Analisi FEM strutturali di un albero di riduttore bistadio mediante Solidworks Simulation
SIMONETTI, LUCA
2024/2025
Abstract
The following final report deals with an in-depth study of the idler shaft of a two-stage reducer, sized during the course "Machine Design 1", using finite element method (FEM) through the SolidWorks Simulation 2022 software. The main objective is to evaluate the behavior of the shaft in terms of fatigue resistance and deformability. The discussion begins with a theoretical introduction to the finite element method, and then continues with two preliminary practical exercises: a planar frame subject to combined loads and a plate with a central hole subject to traction. In the first case, displacements, constraint reactions and the main stress diagrams are calculated, with relative verification of the structural sections according to the allowable stress method. In the second application, exploiting the geometric symmetries present, the stress concentration factor referred to the gross area (Ktg) is determined following a mesh sensitivity analysis, whose convergent value is compared with the known data from the literature obtained from Peterson’s manual. Once the introductory phase is completed, the shaft analysis is carried out. The Kt are determined, also in this case by performing a mesh sensitivity analysis, for some critical sections in terms of fatigue life and they are compared with the theoretical reference values for similar geometries. The last part of the report is dedicated to verifying the deformability of the shaft, comparing the results in terms of deflections and rotations of two FEM models: a real three-dimensional one and a simplified one-dimensional cylindrical beam. The results obtained from both models are compared with the analytical values, which use beam theory concerning the integration of the elastic line.| File | Dimensione | Formato | |
|---|---|---|---|
|
Simonetti_Luca.pdf
accesso aperto
Dimensione
3.56 MB
Formato
Adobe PDF
|
3.56 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/90042