The subject of the thesis is the paper "Hausdorff Measure of Critical Images on Banach Manifolds" published by A. Sard in 1965. In this paper Sard enunciated and demonstrated a refinement of Morse-Sard's theorem, stating that if M and N are respectively a manifold and a Banach manifold and f is a C^k function from M into N, letting A_r be the set of points for which the jacobian of f has rank at most r; then if k is big enough, the dimension of A_r is at most r
La tesi tratta il paper di A. Sard del 1965, "Hausdorff Measure of Critical Images on Banach Manifolds". Il paper tratta un raffinamento del teorema di Morse-Sard, e mostra che, presa una funzione C^k tra una varietà e una varietà di Banach, se k è abbastanza grande, chiamato A_r l'insieme dei punti per cui la Jacobiana di f ha rango al più r, A_r ha dimensione al più r
Hausdorff Measure of Critical Values
EUGENELO, TIZIANA
2024/2025
Abstract
The subject of the thesis is the paper "Hausdorff Measure of Critical Images on Banach Manifolds" published by A. Sard in 1965. In this paper Sard enunciated and demonstrated a refinement of Morse-Sard's theorem, stating that if M and N are respectively a manifold and a Banach manifold and f is a C^k function from M into N, letting A_r be the set of points for which the jacobian of f has rank at most r; then if k is big enough, the dimension of A_r is at most r| File | Dimensione | Formato | |
|---|---|---|---|
|
Eugenelo_Tiziana.pdf
accesso aperto
Dimensione
563.33 kB
Formato
Adobe PDF
|
563.33 kB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/91428