This thesis explores optimal control theory for autonomous problems in infinite horizon, integrating theoretical tools and numerical techniques to analyze the stability of equilibria in dynamical systems derived from the Pontryagin Maximum Principle. Particular attention is given to Michel’s Theorem, which links the Hamiltonian to the objective function, and to Skiba points, which identify critical initial conditions where multiple optimal trajectories coexist. These tools are applied to the advertising diffusion model with network effects presented in “The Digital Economy and Advertising Diffusion Models: Critical Mass and the Stalling Equilibrium” (European Journal of Operational Research, 2024), combining theoretical analysis and MATLAB simulations to visualize optimal trajectories, nullclines, stable manifolds, and Skiba points. The results show how the integration of dynamical systems theory, optimal control, and numerical methods provides a deeper understanding of long-term dynamics and the role of parameters in the selection of optimal strategies, while also suggesting possible future extensions of the model.
La tesi esplora la teoria del controllo ottimo per problemi autonomi in orizzonte infinito, integrando strumenti teorici e tecniche numeriche per l’analisi della stabilità degli equilibri nei sistemi dinamici derivati dal Principio del Massimo di Pontryagin. Particolare attenzione è dedicata al Teorema di Michel, che collega l’Hamiltoniana al valore della funzione obiettivo, e ai punti di Skiba, che identificano condizioni iniziali critiche con più traiettorie ottime possibili. Il lavoro applica questi strumenti al modello di diffusione della pubblicità con effetti di rete presentato in “The Digital Economy and Advertising Diffusion Models: Critical Mass and the Stalling Equilibrium” (European Journal of Operational Research, 2024), combinando analisi teorica e simulazioni MATLAB per visualizzare traiettorie ottime, nullcline, varietà stabili e punti di Skiba. I risultati mostrano come l’integrazione tra teoria dei sistemi dinamici, controllo ottimo e metodi numerici permetta di comprendere le dinamiche di lungo periodo e il ruolo dei parametri nella selezione delle strategie ottime, offrendo spunti per possibili estensioni future del modello.
Problemi di Controllo Ottimo e loro analisi con MATLAB
KAUR, JASMEEN
2024/2025
Abstract
This thesis explores optimal control theory for autonomous problems in infinite horizon, integrating theoretical tools and numerical techniques to analyze the stability of equilibria in dynamical systems derived from the Pontryagin Maximum Principle. Particular attention is given to Michel’s Theorem, which links the Hamiltonian to the objective function, and to Skiba points, which identify critical initial conditions where multiple optimal trajectories coexist. These tools are applied to the advertising diffusion model with network effects presented in “The Digital Economy and Advertising Diffusion Models: Critical Mass and the Stalling Equilibrium” (European Journal of Operational Research, 2024), combining theoretical analysis and MATLAB simulations to visualize optimal trajectories, nullclines, stable manifolds, and Skiba points. The results show how the integration of dynamical systems theory, optimal control, and numerical methods provides a deeper understanding of long-term dynamics and the role of parameters in the selection of optimal strategies, while also suggesting possible future extensions of the model.| File | Dimensione | Formato | |
|---|---|---|---|
|
Kaur_Jasmeen.pdf
accesso aperto
Dimensione
2.32 MB
Formato
Adobe PDF
|
2.32 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/91429