In recent decades, the agricultural sector has faced increasingly complex challenges related to climate change, soil degradation caused by overexploitation, and the growing scarcity of natural resources. These factors have made it essential to develop more sustainable and efficient food production systems. In this context, aquaponics has emerged as an innovative solution, integrating aquaculture and hydroponics to simultaneously produce fish and plants within a closed, circular system. This approach significantly reduces water consumption compared to conventional agriculture, minimizes the release of pollutants, and limits nutrient leaching and waste. Moreover, the controlled environment of aquaponics helps reduce pest and insect infestations, thereby lowering the need for environmentally harmful pesticides and insecticides. One of the key aspects in optimizing aquaponic systems is the efficient use of nutrients. These nutrients primarily come from fish metabolic waste, but their utilization can be further improved through advanced system management techniques such as vermiponics and digeponics, which allow for nutrient recovery from sludge. Although often underestimated, sludge contains valuable fertilizing elements that would otherwise be lost if not recovered. Integrating these techniques makes it possible to transform and reuse sludge, increasing the availability of macro- and micronutrients, reducing waste, and limiting the need for external nutrient inputs—aligning with the principles of a circular economy. Aquaponics is typically practiced in greenhouses, where optimal conditions for the growth of fish and plants can be maintained. Accurate monitoring of chemical parameters, such as pH and water temperature, is crucial as it affects nutrient absorption. Furthermore, managing the bacterial communities present in the system can promote plant growth and protect them from pathogenic organisms. A controlled environment facilitates the regulation of critical factors such as water quality, oxygenation levels, and nutrient composition, ensuring high yield and more efficient production. In this context, the integration of advanced technologies can further enhance the efficiency and sustainability of aquaponic systems, especially in large-scale commercial facilities. The use of advanced sensors, automation systems, and artificial intelligence allows for continuous and detailed system monitoring, optimizing resource management and reducing waste. These tools enable entrepreneurs to oversee complex facilities with greater precision and ease, ensuring better production control. The choice of species to cultivate also plays a key role in system optimization. Carefully pairing different species of fish and plants, as well as understanding their interaction with the surrounding environment, can improve yields and reduce stress on the organisms, thus promoting a more balanced and resilient ecosystem. A less explored, but potentially relevant aspect is the influence of music on plant growth, product quality, and resistance to pathogenic microorganisms. Although there is no definitive scientific consensus, some studies suggest that specific sound frequencies may stimulate photosynthesis, activate immune response genes, and improve crop quality. This thesis aims to analyze and optimize aquaponic system management strategies through the integration of innovative techniques, with the goal of maximizing nutrient use and improving the overall performance of the system.
Negli ultimi decenni, il settore agricolo ha affrontato sfide sempre più complesse, legate ai cambiamenti climatici, all’impoverimento dei suoli causato dal sovrasfruttamento e alla crescente scarsità di risorse naturali. Questi fattori hanno reso indispensabile lo sviluppo di sistemi di produzione alimentare più sostenibili ed efficienti. In questo contesto, l’acquaponica si è affermata come una soluzione innovativa, integrando l'acquacoltura e l'idroponica per produrre simultaneamente pesci e piante all’interno di un sistema chiuso e circolare. Questo approccio consente di ridurre significativamente il consumo di acqua rispetto all'agricoltura convenzionale, minimizzare il rilascio di sostanze inquinanti e limitare il dilavamento e lo spreco dei nutrienti. Inoltre, l’ambiente controllato dell’acquaponica permette di ridurre l’attacco da parte di parassiti e insetti, abbassando così la necessità di utilizzare pesticidi e insetticidi dannosi per l’ambiente. Uno degli aspetti chiave per ottimizzare i sistemi acquaponici è l’efficientamento dell’uso dei nutrienti. Questi derivano principalmente dagli scarti metabolici dei pesci, ma il loro utilizzo può essere ulteriormente migliorato attraverso tecniche avanzate di gestione del sistema, come la vermiponica e la digeponica, che permettono il recupero dei nutrienti dai fanghi. Sebbene spesso sottovalutati, i fanghi contengono elementi fertilizzanti preziosi che, se non recuperati, andrebbero persi. L’integrazione di queste tecniche consente di trasformare e riutilizzare i fanghi, aumentando la disponibilità di macro e micronutrienti, riducendo gli sprechi e limitando la necessità di introdurre elementi nutritivi esterni, in un’ottica di economia circolare. L’acquaponica viene generalmente praticata in serre, dove è possibile creare condizioni ottimali per la crescita di pesci e piante. Il monitoraggio accurato di parametri chimici, come pH e temperatura dell’acqua, è fondamentale poiché influisce sull’assorbimento dei nutrienti. Inoltre, la gestione delle comunità batteriche presenti nel sistema può favorire la crescita delle piante e proteggerle da organismi patogeni. Un ambiente controllato facilita la regolazione di fattori critici, come la qualità dell'acqua, il livello di ossigenazione e la composizione dei nutrienti, garantendo un rendimento elevato e una produzione più efficiente. In questo contesto, l’integrazione di tecnologie avanzate può migliorare ulteriormente l’efficienza e la sostenibilità dei sistemi acquaponici, specialmente negli impianti commerciali di grandi dimensioni. L’uso di sensori avanzati, sistemi di automazione e intelligenza artificiale consente un monitoraggio continuo e dettagliato del sistema, ottimizzando la gestione delle risorse e riducendo gli sprechi. Questi strumenti permettono agli imprenditori di supervisionare impianti complessi con maggiore precisione e facilità, garantendo un migliore controllo della produzione. L’abbinamento studiato tra diverse specie di pesci e piante, nonché la loro interazione con l’ambiente circostante, può migliorare le rese produttive e ridurre lo stress per gli organismi, favorendo così un ecosistema più equilibrato e resiliente. Un aspetto meno esplorato, ma potenzialmente rilevante, è l’influenza della musica sulla crescita delle piante, sulla qualità dei prodotti e sulla loro resistenza ai microrganismi patogeni. Sebbene non esista un consenso scientifico definitivo, alcune ricerche suggeriscono che particolari frequenze sonore possano stimolare la fotosintesi, attivare i geni della risposta immunitaria e migliorare la qualità del raccolto. Questa tesi si propone di analizzare e ottimizzare le strategie di gestione dei sistemi acquaponici attraverso l’integrazione di tecniche innovative, con l'obiettivo di massimizzare l’uso dei nutrienti e migliorare il rendimento complessivo del sistema.
Ottimizzazione dei Sistemi Acquaponici: Integrazione di Tecniche e Tecnologie per Massimizzare l'Uso dei Nutrienti e Migliorare il Rendimento
CHERUBINI, NICOLA
2024/2025
Abstract
In recent decades, the agricultural sector has faced increasingly complex challenges related to climate change, soil degradation caused by overexploitation, and the growing scarcity of natural resources. These factors have made it essential to develop more sustainable and efficient food production systems. In this context, aquaponics has emerged as an innovative solution, integrating aquaculture and hydroponics to simultaneously produce fish and plants within a closed, circular system. This approach significantly reduces water consumption compared to conventional agriculture, minimizes the release of pollutants, and limits nutrient leaching and waste. Moreover, the controlled environment of aquaponics helps reduce pest and insect infestations, thereby lowering the need for environmentally harmful pesticides and insecticides. One of the key aspects in optimizing aquaponic systems is the efficient use of nutrients. These nutrients primarily come from fish metabolic waste, but their utilization can be further improved through advanced system management techniques such as vermiponics and digeponics, which allow for nutrient recovery from sludge. Although often underestimated, sludge contains valuable fertilizing elements that would otherwise be lost if not recovered. Integrating these techniques makes it possible to transform and reuse sludge, increasing the availability of macro- and micronutrients, reducing waste, and limiting the need for external nutrient inputs—aligning with the principles of a circular economy. Aquaponics is typically practiced in greenhouses, where optimal conditions for the growth of fish and plants can be maintained. Accurate monitoring of chemical parameters, such as pH and water temperature, is crucial as it affects nutrient absorption. Furthermore, managing the bacterial communities present in the system can promote plant growth and protect them from pathogenic organisms. A controlled environment facilitates the regulation of critical factors such as water quality, oxygenation levels, and nutrient composition, ensuring high yield and more efficient production. In this context, the integration of advanced technologies can further enhance the efficiency and sustainability of aquaponic systems, especially in large-scale commercial facilities. The use of advanced sensors, automation systems, and artificial intelligence allows for continuous and detailed system monitoring, optimizing resource management and reducing waste. These tools enable entrepreneurs to oversee complex facilities with greater precision and ease, ensuring better production control. The choice of species to cultivate also plays a key role in system optimization. Carefully pairing different species of fish and plants, as well as understanding their interaction with the surrounding environment, can improve yields and reduce stress on the organisms, thus promoting a more balanced and resilient ecosystem. A less explored, but potentially relevant aspect is the influence of music on plant growth, product quality, and resistance to pathogenic microorganisms. Although there is no definitive scientific consensus, some studies suggest that specific sound frequencies may stimulate photosynthesis, activate immune response genes, and improve crop quality. This thesis aims to analyze and optimize aquaponic system management strategies through the integration of innovative techniques, with the goal of maximizing nutrient use and improving the overall performance of the system.| File | Dimensione | Formato | |
|---|---|---|---|
|
Cherubini_Nicola.pdf.pdf
Accesso riservato
Dimensione
1.11 MB
Formato
Adobe PDF
|
1.11 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/91533