This study explores a way to implement the use of Generative Artificial Intelligence (GenAI) optimizing the go-to-market (GTM) strategy of a healthcare platform. The aim is to define a process that associates a broad GTM pathway to the use of GenAI in order to highlight strategic alternatives, maintaining coherence and traceability of decisions. This analysis is based on the Cercavisita case study, a two-sided marketplace platform that connects patients and healthcare professionals. Starting from a structured GTM five phase framework the study shows how GenAI can be leveraged to generate different scenarios. Prompt engineering plays a key role in the generations and the evaluation of different strategic options, coordinating all the process with a modular prompt and the aid of dimensional frameworks, evaluation criteria and the company expertise of the case study. Results reflect that integrating GTM and GenAI allows the generations and comparison of feasible scenarios, provides a disciplined decision pathway, and supports a measurable, replicable rollout for Cercavisita and similar platforms.
Questo studio esplora un modo per applicare l’Intelligenza Artificiale Generativa (GenAI) all’ottimizzazione della strategia di go-to-market (GTM) di una piattaforma sanitaria. L’obiettivo è definire un processo che colleghi un percorso GTM ampio all’impiego della GenAI, evidenziando alternative strategiche e mantenendo coerenza e tracciabilità delle decisioni. L’analisi si basa sul caso di studio Cercavisita, una piattaforma marketplace a due versanti, che mette in contatto pazienti e professionisti sanitari. Partendo da un framework GTM strutturato in cinque fasi, il lavoro mostra come la GenAI possa essere sfruttata per generare diversi scenari. Il prompt engineering svolge un ruolo chiave nella generazione e nella valutazione delle varie opzioni strategiche, coordinando l’intero processo mediante un prompt modulare e con il supporto di framework dimensionali, criteri di valutazione e delle competenze dell’azienda del caso di studio. I risultati indicano che l’integrazione tra GTM e GenAI consente di generare e confrontare scenari attuabili, offre un percorso decisionale disciplinato e supporta un rollout misurabile e replicabile per Cercavisita e piattaforme analoghe.
Optimizing Go-to-Market Strategy through Generative AI: Scenario Modeling of a Healthcare Platform
COLAPIETRO, MATTIA
2024/2025
Abstract
This study explores a way to implement the use of Generative Artificial Intelligence (GenAI) optimizing the go-to-market (GTM) strategy of a healthcare platform. The aim is to define a process that associates a broad GTM pathway to the use of GenAI in order to highlight strategic alternatives, maintaining coherence and traceability of decisions. This analysis is based on the Cercavisita case study, a two-sided marketplace platform that connects patients and healthcare professionals. Starting from a structured GTM five phase framework the study shows how GenAI can be leveraged to generate different scenarios. Prompt engineering plays a key role in the generations and the evaluation of different strategic options, coordinating all the process with a modular prompt and the aid of dimensional frameworks, evaluation criteria and the company expertise of the case study. Results reflect that integrating GTM and GenAI allows the generations and comparison of feasible scenarios, provides a disciplined decision pathway, and supports a measurable, replicable rollout for Cercavisita and similar platforms.| File | Dimensione | Formato | |
|---|---|---|---|
|
Colapietro_Mattia.pdf
embargo fino al 22/09/2026
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/91667