Cancer is the second leading cause of death worldwide.[1] Hence, it is necessary to develop in vitro models that can recapitulate the in vivo the tumor microenvironment (TME). In cancer research, an in vitro tumor model is a valuable and essential tool for the assessment of therapeutic drug efficiency ahead of in vivo studies.[2] TME in vitro bidimensional models (2D), despite being cost-effective and rapid to fabricate, poorly recapitulates the physicalness of natural tissues. In addition, they cannot recreate the typical in vivo advanced tumor heterogeneity that can be found during the cancer progression. Tumor cells are usually cultured for prolonged periods in hard plastic or Petri dishes[1], causing the impossibility to mimic the microenvironment surrounding the tumor cells. An alternative to these methods are animal models, generally based on tumor cells injection in immunodeficient mice. They have been used since the 1960s. However, they have high costs and often cannot adequately represent the disease due to physical differences from humans.[3] Three-dimensional (3D) in vitro cancer models have emerged as an alternative approach to conventional methods and they have shown the potential to recapitulate the natural microenvironment of tumors in a relatively simple and inexpensive way compared to conventional methods.[4] These models involve specific biomaterials (especially hydrogels) with tunable physical biochemical properties, and can contain both the 3D tumor cells compartment (called parenchyma) and stromal cells that support the metabolic activities of the TME. Additionally, these cells can possibly be spatially compartmentalized using 3D printing methods. This thesis will illustrate the main strategies for the development and application of recently engineered 3D tumor models. In conclusion, it will highlight future directions [4] for 3D cancer models towards anti-tumor applications.
Il cancro rappresenta la seconda maggiore causa di morte a livello mondiale. [1] Per questo motivo risulta necessario sviluppare dei modelli di microambienti di cellule tumorali in vitro (detti TME) che possano ricapitolare quello che normalmente e l’ambiente in cui le cellule tumorali si trovano (detto microambiente in vivo). Questi modelli in vitro sono oggi degli importantissimi strumenti di ricerca sul cancro, poiché forniscono l’ambiente su cui testare nuovi farmaci oncologici e terapie innovative. [2] I microambienti di colture cellulari bidimensionali (2D), seppur economici e veloci da realizzare, non sono in grado di ricreare l’ambiente in cui solitamente le cellule tumorali operano e non riescono a gestire l’eterogeneità del complesso tumore-ambiente che viene a formarsi nel ` corso del tempo. Nella maggior parte dei casi, i modelli 2D presuppongono la coltura delle cellule tumorali in capsule Petri di vetro o plastica, rendendo impossibile una qualsiasi ricapitolazione dell’ambiente circostante il tumore. [1] Un’alternativa ai modelli bidimensionali e rappresentata dai modelli ` animali, basati generalmente sull’iniezione di cellule tumorali in topi immunodepressi. Anche se questi modelli vengono utilizzati con successo dagli anni ’60, presentano costi elevati e non riescono a fornire un’adeguata interpretazione del microambiente che si sviluppa in vivo nei pazienti umani. [3] Invece, i più recenti modelli tridimensionali (3D) si stanno rivelando essere il miglior metodo di rappresentazione in vitro dei tumori. Essi permettono una migliore interpretazione dell’ambiente cellulare ed extracellulare umano e offrono un valido supporto alla ricerca contro il cancro. [4] Lo sviluppo di questi modelli in tre dimensioni richiede specifici biomateriali caratterizzati da proprietà meccaniche, biochimiche e fisiche modulabili, che possano formare delle strutture (scaffold) che contengano cellule tumorali ed epiteliali (il cosiddetto parenchima), circondate dalla componente di supporto, detta stroma, contenente fibroblasti e nutrienti utili alla sopravvivenza del tumore. Lo scopo di questo lavoro di tesi e riassumere i principali tipi di modelli sviluppati fino ad oggi, delinearne i corrispondenti metodi di fabbricazione e presentare gli sviluppi futuri di questa tecnologia come supporto alla ricerca contro il cancro.
3D MODELS OF THE TUMOR MICROENVIRONMENT
BARIN, EMANUELE
2024/2025
Abstract
Cancer is the second leading cause of death worldwide.[1] Hence, it is necessary to develop in vitro models that can recapitulate the in vivo the tumor microenvironment (TME). In cancer research, an in vitro tumor model is a valuable and essential tool for the assessment of therapeutic drug efficiency ahead of in vivo studies.[2] TME in vitro bidimensional models (2D), despite being cost-effective and rapid to fabricate, poorly recapitulates the physicalness of natural tissues. In addition, they cannot recreate the typical in vivo advanced tumor heterogeneity that can be found during the cancer progression. Tumor cells are usually cultured for prolonged periods in hard plastic or Petri dishes[1], causing the impossibility to mimic the microenvironment surrounding the tumor cells. An alternative to these methods are animal models, generally based on tumor cells injection in immunodeficient mice. They have been used since the 1960s. However, they have high costs and often cannot adequately represent the disease due to physical differences from humans.[3] Three-dimensional (3D) in vitro cancer models have emerged as an alternative approach to conventional methods and they have shown the potential to recapitulate the natural microenvironment of tumors in a relatively simple and inexpensive way compared to conventional methods.[4] These models involve specific biomaterials (especially hydrogels) with tunable physical biochemical properties, and can contain both the 3D tumor cells compartment (called parenchyma) and stromal cells that support the metabolic activities of the TME. Additionally, these cells can possibly be spatially compartmentalized using 3D printing methods. This thesis will illustrate the main strategies for the development and application of recently engineered 3D tumor models. In conclusion, it will highlight future directions [4] for 3D cancer models towards anti-tumor applications.| File | Dimensione | Formato | |
|---|---|---|---|
|
Barin_Emanuele.pdf
Accesso riservato
Dimensione
5.45 MB
Formato
Adobe PDF
|
5.45 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/91703