Since the late 20th century, technologies based on near-infrared spectroscopy (NIRS) have been increasingly developed for the non-invasive measurement of oxygenated and deoxygenated hemoglobin concentrations in the brain. In particular, functional near-infrared spectroscopy (fNIRS) is gaining widespread use with the aim of detecting concentration changes and reconstructing functional maps of cerebral hemodynamic activity through Diffuse Optical Tomography (DOT). Thanks to these advances, fNIRS is now emerging as a promising methodology in both clinical applications and cognitive neuroscience. This thesis presents the fundamental principles of the technique, followed by a practical case study in which algorithms for motion artifact correction, hemodynamic response estimation, and DOT activation map generation were implemented and optimized on fNIRS data acquired at the University of Padua during motor tasks. To complement the work, all scripts used and developed are reported and documented, ensuring that the analysis pipeline is fully replicable and adaptable to different experimental contexts.
Dalla fine del secolo scorso si è assistito a un crescente sviluppo di tecnologie basate sulla spettroscopia nel vicino infrarosso (NIRS) per la misura non invasiva delle concentrazioni di emoglobina ossigenata e deossigenata a livello cerebrale. In particolare, la fNIRS si sta affermando come strumento sempre più diffuso, con l’obiettivo di rilevare variazioni di concentrazione e ricostruire mappe funzionali dell’attività emodinamica cerebrale tramite tecniche di Diffuse Optical Tomography (DOT). Grazie a questi progressi, la fNIRS rappresenta oggi una metodologia promettente sia in ambito clinico sia nelle neuroscienze cognitive. \\ In questo elaborato vengono presentati i principi di funzionamento della tecnica, seguiti dall’analisi di un caso applicativo in cui sono stati implementati e ottimizzati algoritmi per la correzione degli artefatti da movimento, la stima della risposta emodinamica e la generazione di mappe di attivazione DOT a partire da dati fNIRS acquisiti presso l’Università degli Studi di Padova durante compiti motori. A completamento del lavoro, sono riportati e documentati tutti gli script utilizzati e sviluppati, così da rendere l'analisi replicabile e adattabile a diversi contesti sperimentali.
Analisi di segnali cerebrali e ricostruzione di immagini da dati di spettroscopia funzionale nel vicino infrarosso
VOLTOLINA, FRANCESCO
2024/2025
Abstract
Since the late 20th century, technologies based on near-infrared spectroscopy (NIRS) have been increasingly developed for the non-invasive measurement of oxygenated and deoxygenated hemoglobin concentrations in the brain. In particular, functional near-infrared spectroscopy (fNIRS) is gaining widespread use with the aim of detecting concentration changes and reconstructing functional maps of cerebral hemodynamic activity through Diffuse Optical Tomography (DOT). Thanks to these advances, fNIRS is now emerging as a promising methodology in both clinical applications and cognitive neuroscience. This thesis presents the fundamental principles of the technique, followed by a practical case study in which algorithms for motion artifact correction, hemodynamic response estimation, and DOT activation map generation were implemented and optimized on fNIRS data acquired at the University of Padua during motor tasks. To complement the work, all scripts used and developed are reported and documented, ensuring that the analysis pipeline is fully replicable and adaptable to different experimental contexts.| File | Dimensione | Formato | |
|---|---|---|---|
|
Voltolina_Francesco.pdf
accesso aperto
Dimensione
15.83 MB
Formato
Adobe PDF
|
15.83 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/91753