Mitochondrial diseases are among the most common inherited metabolic disorders caused by dysfunctions in the respiratory chain and, consequently, reduced ATP production. These conditions are associated with mutations in both mitochondrial and nuclear DNA. Mitochondria contain multiple copies of their own genome, so mutated mtDNA molecules can coexist with wild-type ones within the same cell, a condition known as heteroplasmy. When the level of pathogenic mtDNA exceeds a certain threshold, clinical symptoms of varying severity may appear. Currently, no definitive therapy exists, and treatment is limited to palliative care. Research has focused on lowering the heteroplasmy threshold, initially using endonucleases such as ZFNs and TALENs, which, however, showed limitations. Therefore, mitochondrial base editing approaches like DdCBE have been developed, capable of inducing a C→T transition in mtDNA. In this study, the efficiency of DdCBE was characterized in a heteroplasmic mouse model for the m.5024T mutation in the gene encoding mt-tRNA^Ala, which disrupts base pairing in the acceptor stem, reducing its functionality and causing damage to respiratory chain subunits. The authors observed that the compensatory m.5081C→T mutation, introduced by DdCBE via AAV9 viral vector injection in mice, increased levels of functional mt-tRNA^Ala in the heart and anterior tibial muscle.
Le malattie mitocondriali fanno parte delle patologie metaboliche ereditare più comuni dovute a disfunzioni della catena respiratoria e quindi alla ridotta produzione di ATP, associate a mutazioni sul DNA mitocondriale e nucleare. I mitocondri contengono più copie del proprio genoma quindi molecole di mtDNA mutati possono coesistere con molecole WT nella medesima cellula, una condizione nota come eteroplasmia. Quando il livello di mtDNA patologico supera una certa soglia possono manifestarsi sintomi più o meno gravi. Attualmente non esiste una terapia definitiva ma l’approccio è limitato a cure palliative. La ricerca si è concentrata sull’abbassare la soglia di eteroplasmia utilizzando inizialmente endonucleasi come ZFNs e TALENs, riscontrando però delle limitazioni. Pertanto, hanno sviluppato approcci di base editing mitocondriale, come DdCBE, in grado di indurre una transizione C→T sul mtDNA. In questo studio hanno caratterizzato la sua efficienza in modello murino eteroplasmico per la mutazione m.5024T nel gene per il mt-tRNAAla che provoca un’interruzione nell’appaiamento delle basi complementari nello stelo accettore, riducendone la funzionalità e conseguenti danni alle subunità della catena respiratoria. Hanno osservato che la mutazione compensatoria m.5081C→T introdotta da DdCBE iniettato in topo attraverso il vettore virale AAV9 aumentava i livelli di mt-tRNAAla funzionante in cuore e muscolo tibiale anteriore.
Base editing mitocondriale in vivo: correzione della mutazione m.5024T
MORO, VALENTINA
2024/2025
Abstract
Mitochondrial diseases are among the most common inherited metabolic disorders caused by dysfunctions in the respiratory chain and, consequently, reduced ATP production. These conditions are associated with mutations in both mitochondrial and nuclear DNA. Mitochondria contain multiple copies of their own genome, so mutated mtDNA molecules can coexist with wild-type ones within the same cell, a condition known as heteroplasmy. When the level of pathogenic mtDNA exceeds a certain threshold, clinical symptoms of varying severity may appear. Currently, no definitive therapy exists, and treatment is limited to palliative care. Research has focused on lowering the heteroplasmy threshold, initially using endonucleases such as ZFNs and TALENs, which, however, showed limitations. Therefore, mitochondrial base editing approaches like DdCBE have been developed, capable of inducing a C→T transition in mtDNA. In this study, the efficiency of DdCBE was characterized in a heteroplasmic mouse model for the m.5024T mutation in the gene encoding mt-tRNA^Ala, which disrupts base pairing in the acceptor stem, reducing its functionality and causing damage to respiratory chain subunits. The authors observed that the compensatory m.5081C→T mutation, introduced by DdCBE via AAV9 viral vector injection in mice, increased levels of functional mt-tRNA^Ala in the heart and anterior tibial muscle.| File | Dimensione | Formato | |
|---|---|---|---|
|
TESI Valentina Moro.pdf
accesso aperto
Dimensione
2.79 MB
Formato
Adobe PDF
|
2.79 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/91967