The development of low-cost underwater acoustic communication systems is nowadays a great challenge for scientific, industrial, and environmental applications. Even if commercial transducers ensure optimum performance, costs limit their use in reduced-budget scenarios, such as sensor networks or realization of inexpensiveAutonomousUnderwaterVehicles (AUVs). This thesis describes design, construction, and characterization of homemade piezoelectric transducers, with particular attention to materials selection, analyzing different piezoelectric materials and encapsulation resins, along with manufacturing procedures. After an analysis of functioning principles as well as most common characterization methods, three prototypes respectevely named "white-transducer", "gladys-transducer" and "3dMold-transducer" were produced using different molds and resins. Transmitting Voltage Response (TVR) and Receiving Voltage Response (RVR) of these prototypes were obtained in a calibration tank making use of a reference hydrophone, in order to prove that quality of the encapsulation process and mold geometry decisively affect the final performance. In particular, the Smooth-Cast 65D resin showed limitations due to rapid polymerization and the formation of air bubbles, while the professional resin used with vacuum degassing and improved mold geometries, ensured denser and defect-free encapsulations, with more regular and consistent spectral responses. All prototypes confirmed a resonance peak at approximately 43 kHz, with variations due to tank reflections, and a consistent response among them. The results, thus, are encouraging with regard to designing functional as well as inexpensive acoustic transducers, significantly cheaper than commercial solutions, paving the way for future optimizations aimed at improving stability, reliability, and repeatability of materials and procedures for applications in low-cost underwater acoustic networks.
Lo sviluppo di sistemi di comunicazione acustica subacquea a basso costo rappresenta oggi una grande sfida per applicazioni scientifiche, industriali e ambientali. Anche se i trasduttori commerciali garantiscono prestazioni ottimali, i costi ne limitano l’uso in scenari a budget ridotto, come le reti di sensori o la realizzazione di Veicoli Subacquei Autonomi (AUV) economici. Questa tesi descrive la progettazione, la costruzione e la caratterizzazione di trasduttori piezoelettrici a basso costo, con particolare attenzione alla selezione dei materiali, all’analisi di diversi materiali piezoelettrici e resine di incapsulamento, nonché alle procedure di fabbricazione. Dopo un’analisi dei principi di funzionamento e dei metodi di caratterizzazione più comuni, sono stati sviluppati tre prototipi, denominati rispettivamente "white-transducer", "gladys-transducer" e "3dMold-transducer", utilizzando stampi e resine diverse. La Risposta in Tensione di Trasmissione (TVR) e la Risposta in Tensione di Ricezione (RVR) di questi prototipi sono state ottenute in una vasca di calibrazione utilizzando un idrofono di riferimento, al fine di dimostrare che la qualità del processo di incapsulamento e la geometria dello stampo influenzano in modo determinante le prestazioni finali. In particolare, la resina Smooth-Cast 65D ha mostrato limitazioni a causa della rapida polimerizzazione e della formazione di bolle d’aria, mentre la resina professionale, utilizzata con degassificazione sotto vuoto e geometrie di stampo migliorate, ha garantito incapsulamenti più densi e privi di difetti, con risposte spettrali più regolari e costanti. Tutti i prototipi hanno confermato un picco di risonanza a circa 43 kHz, con variazioni limitate dovute alle riflessioni della vasca. I risultati, quindi, sono incoraggianti per quanto riguarda la progettazione di trasduttori acustici funzionali e poco costosi, significativamente più economici delle soluzioni commerciali, aprendo la strada a future ottimizzazioni in materiali e procedure volte a migliorare la stabilità, l’affidabilità e la ripetibilità per applicazioni in reti acustiche subacquee a basso costo.
Progettazione e sviluppo di trasduttori acustici subacquei
AZZARI, GIACOMO
2024/2025
Abstract
The development of low-cost underwater acoustic communication systems is nowadays a great challenge for scientific, industrial, and environmental applications. Even if commercial transducers ensure optimum performance, costs limit their use in reduced-budget scenarios, such as sensor networks or realization of inexpensiveAutonomousUnderwaterVehicles (AUVs). This thesis describes design, construction, and characterization of homemade piezoelectric transducers, with particular attention to materials selection, analyzing different piezoelectric materials and encapsulation resins, along with manufacturing procedures. After an analysis of functioning principles as well as most common characterization methods, three prototypes respectevely named "white-transducer", "gladys-transducer" and "3dMold-transducer" were produced using different molds and resins. Transmitting Voltage Response (TVR) and Receiving Voltage Response (RVR) of these prototypes were obtained in a calibration tank making use of a reference hydrophone, in order to prove that quality of the encapsulation process and mold geometry decisively affect the final performance. In particular, the Smooth-Cast 65D resin showed limitations due to rapid polymerization and the formation of air bubbles, while the professional resin used with vacuum degassing and improved mold geometries, ensured denser and defect-free encapsulations, with more regular and consistent spectral responses. All prototypes confirmed a resonance peak at approximately 43 kHz, with variations due to tank reflections, and a consistent response among them. The results, thus, are encouraging with regard to designing functional as well as inexpensive acoustic transducers, significantly cheaper than commercial solutions, paving the way for future optimizations aimed at improving stability, reliability, and repeatability of materials and procedures for applications in low-cost underwater acoustic networks.| File | Dimensione | Formato | |
|---|---|---|---|
|
Azzari_Giacomo.pdf
embargo fino al 24/09/2028
Dimensione
23.9 MB
Formato
Adobe PDF
|
23.9 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/92478