The interstellar medium (ISM) refers to the diffuse material that permeates the space between stars within a galaxy, consisting primarily of ionized, neutral, and molecular gas, as well as interstellar dust grains. These grains, mainly composed of silicate, amorphous carbon, and ices, play a crucial role in star formation processes, molecular cloud chemistry, and in the absorption and scattering of radiation. The analysis of the interstellar medium is carried out through multi-wavelength observations (radio, infrared, optical, UV, and X-rays) using instruments such as high-resolution spectrographs, space telescopes (e.g., Hubble, Spitzer, James Webb), radio telescopes (e.g., ALMA, VLA), and in situ probes (e.g., Ulysses, New Horizons). The main objective is to characterize the chemical composition, dust grain distribution, and the magnetic and dynamic properties of the ISM, in order to better understand galactic evolution mechanisms and cosmic ray propagation. From an engineering perspective, detailed study of the interstellar medium has fundamental implications for the design of future interstellar space missions. Interstellar dust grains, for example, represent a significant threat to high-velocity probes due to high-energy impacts, necessitating the development of innovative shielding systems, advanced materials, and damage mitigation strategies. Moreover, understanding local ISM densities allows for optimized trajectories, improved risk assessments, and the development of resilient communication and propulsion systems. In conclusion, exploring and characterizing the ISM not only enriches our astrophysical knowledge but also serves as a scientific and technological foundation for developing sustainable and safe space engineering, paving the way for future interstellar exploration.
Il mezzo interstellare (ISM, Interstellar Medium) rappresenta il materiale diffuso che permea lo spazio tra le stelle all'interno di una galassia, costituito principalmente da gas ionizzato, neutro, molecolare e da grani di polvere interstellare. Questi grani, composti prevalentemente da silicato, carbonio amorfo e ghiacci, svolgono un ruolo chiave nei processi di formazione stellare, nella chimica delle nubi molecolari e nell'assorbimento e scattering della radiazione. L'analisi del mezzo interstellare è condotta mediante osservazioni multi-banda (radio, infrarosso, ottico, UV e raggi X) grazie a strumenti come spettroscopi ad alta risoluzione, telescopi spaziali (es. Hubble, Spitzer, James Webb), radiotelescopi (es. ALMA, VLA) e sonde in situ (es. Ulysses, New Horizons). L'obiettivo principale è caratterizzare la composizione chimica, la distribuzione dei grani di polvere e le proprietà magnetiche e dinamiche dell'ISM, al fine di comprendere meglio i meccanismi di evoluzione galattica e di propagazione della radiazione cosmica. Dal punto di vista ingegneristico, lo studio dettagliato del mezzo interstellare ha implicazioni fondamentali per la progettazione di future missioni spaziali interstellari. I grani di polvere interstellare, ad esempio, costituiscono una minaccia potenziale per le sonde ad alta velocità a causa degli impatti ad alta energia, rendendo necessaria la realizzazione di scudi protettivi innovativi, materiali avanzati e sistemi di mitigazione dei danni. Inoltre, la conoscenza delle densità locali del mezzo interstellare consente di ottimizzare le traiettorie, prevedere rischi e sviluppare sistemi di comunicazione e propulsione resilienti. In conclusione, l'esplorazione e la caratterizzazione dell'ISM non solo arricchiscono la nostra comprensione astrofisica, ma costituiscono anche un pilastro scientifico e tecnologico per lo sviluppo di un'ingegneria spaziale sostenibile e sicura, aprendo la strada alla futura esplorazione interstellare.
Il mezzo interstellare: composizione chimica e prospettive per l'ingegneria spaziale
CALZIA, ILARIA
2024/2025
Abstract
The interstellar medium (ISM) refers to the diffuse material that permeates the space between stars within a galaxy, consisting primarily of ionized, neutral, and molecular gas, as well as interstellar dust grains. These grains, mainly composed of silicate, amorphous carbon, and ices, play a crucial role in star formation processes, molecular cloud chemistry, and in the absorption and scattering of radiation. The analysis of the interstellar medium is carried out through multi-wavelength observations (radio, infrared, optical, UV, and X-rays) using instruments such as high-resolution spectrographs, space telescopes (e.g., Hubble, Spitzer, James Webb), radio telescopes (e.g., ALMA, VLA), and in situ probes (e.g., Ulysses, New Horizons). The main objective is to characterize the chemical composition, dust grain distribution, and the magnetic and dynamic properties of the ISM, in order to better understand galactic evolution mechanisms and cosmic ray propagation. From an engineering perspective, detailed study of the interstellar medium has fundamental implications for the design of future interstellar space missions. Interstellar dust grains, for example, represent a significant threat to high-velocity probes due to high-energy impacts, necessitating the development of innovative shielding systems, advanced materials, and damage mitigation strategies. Moreover, understanding local ISM densities allows for optimized trajectories, improved risk assessments, and the development of resilient communication and propulsion systems. In conclusion, exploring and characterizing the ISM not only enriches our astrophysical knowledge but also serves as a scientific and technological foundation for developing sustainable and safe space engineering, paving the way for future interstellar exploration.| File | Dimensione | Formato | |
|---|---|---|---|
|
Calzia_Ilaria.pdf
Accesso riservato
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/92775