Over the past few decades, the design of devices and equipment has increasingly relied on numerical simulation tools to analyze electric and magnetic fields. The Finite Element Method (FEM), in particular, has become a fundamental tool for solving boundary value problems derived from Maxwell's equations, thanks to its flexibility in handling complex geometries and heterogeneous materials. This thesis studies and compares different electromagnetic formulations under static and quasi-static conditions, highlighting their advantages and disadvantages from the perspective of numerical solution. Moreover, a FEM implementation in MATLAB is developed to solve such static and low-frequency problems, and it is applied to the analysis of a simplified real-world case study. The objective is twofold: on the one hand, to compare the available formulations in order to show how the choice of formulation influences the computational complexity and the generality of the solvable problem; on the other hand, to verify through numerical simulation the differences in the results between a purely static and a quasi-static approach.
Nel corso degli ultimi decenni la progettazione di dispositivi è apparecchiature si è sempre più affidata a strumenti di simulazione numerica per analizzare campi elettrici e magnetici. Il metodo degli elementi finiti (FEM) in particolare è divenuto uno strumento fondamentale per risolvere problemi ai valori al contorno derivanti dalle equazioni di Maxwell, grazie alla sua flessibilità nel gestire geometrie complesse e materiali eterogenei. In questa tesi si studiano e confrontano diverse formulazioni elettromagnetiche in condizioni statiche e quasi-statiche, evidenziandone i vantaggi e svantaggi nell’ottica di una soluzione numerica. Inoltre, si realizza un’implementazione del FEM in MATLAB per risolvere tali problemi statici e a basse frequenze, e la applica all’analisi di un caso di studio reale semplificato. L’obiettivo è duplice: da un lato comparare le formulazioni possibili per mettere in luce come la scelta della formulazione influenzi la complessità computazionale e la generalità del problema risolvibile. Dall’altro lato, verificare tramite simulazione numerica le differenze nei risultati tra un approccio puramente statico e uno quasi-statico
Analisi della formulazione magnetostatica e risoluzione con il metodo agli elementi finiti
CULPO, JASON
2024/2025
Abstract
Over the past few decades, the design of devices and equipment has increasingly relied on numerical simulation tools to analyze electric and magnetic fields. The Finite Element Method (FEM), in particular, has become a fundamental tool for solving boundary value problems derived from Maxwell's equations, thanks to its flexibility in handling complex geometries and heterogeneous materials. This thesis studies and compares different electromagnetic formulations under static and quasi-static conditions, highlighting their advantages and disadvantages from the perspective of numerical solution. Moreover, a FEM implementation in MATLAB is developed to solve such static and low-frequency problems, and it is applied to the analysis of a simplified real-world case study. The objective is twofold: on the one hand, to compare the available formulations in order to show how the choice of formulation influences the computational complexity and the generality of the solvable problem; on the other hand, to verify through numerical simulation the differences in the results between a purely static and a quasi-static approach.| File | Dimensione | Formato | |
|---|---|---|---|
|
Presentazione Tesi Culpo Jason .pdf
Accesso riservato
Dimensione
1.33 MB
Formato
Adobe PDF
|
1.33 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/92855