This thesis describes the development of a software module integrated into an Android and iOS mobile application for contact management (iCRM), with the aim of automating the enrichment of customer profile data. The project, carried out in collaboration with the company Sanmarco Informatica S.p.A. within the Business Unit 4Words, falls within the scope of Sales Force Automation solutions. The implemented module performs web scraping activities starting from data acquired through a business card, such as the email address or the associated web domain. By automatically analyzing the main pages of the company’s website, the system extracts useful information such as headquarters, contact details, industry sector, and links to social media channels. To support this process, artificial intelligence models have been integrated to improve the relevance and accuracy of text extraction. The work involved the use of Kotlin for Android development, Swift for iOS development, and Python for scraping and analysis components. The module was validated through tests on real-world scenarios and includes an interface for previewing and confirming the extracted data by the user. The project represents a practical example of integration between mobile apps, AI, and process automation.
La presente tesi descrive lo sviluppo di un modulo software integrato in una applicazione mobile Android e iOS per la gestione dei contatti (iCRM), con l’obiettivo di automatizzare l’arricchimento dei dati anagrafici dei clienti. Il progetto, svolto in collaborazione con l’azienda Sanmarco Informatica S.p.A. all’interno della Business Unit 4Words, si inserisce nell’ambito delle soluzioni per la Sales Force Automation. Il modulo realizzato effettua attività di web scraping a partire da dati acquisiti tramite biglietto da visita, come l'indirizzo email o il dominio web associato. Analizzando in automatico le principali pagine del sito aziendale, il sistema estrae informazioni utili quali sede, recapiti, settore merceologico e collegamenti ai canali social. A supporto del processo, sono stati integrati modelli di intelligenza artificiale per migliorare la rilevanza e la precisione dell’estrazione testuale. Il lavoro ha previsto l’uso di Kotlin per lo sviluppo Android, Swift per lo sviluppo iOS e Python per le componenti di scraping e analisi. Il modulo è stato validato tramite test su scenari reali e include un’interfaccia per l’anteprima e la conferma dei dati estratti da parte dell’utente. Il progetto rappresenta un esempio pratico di integrazione tra mobile app, AI e automazione dei processi informativi.
Sviluppo di un Modulo di Data Scraping e Intelligenza Artificiale per l’Arricchimento dei Contatti in un’App CRM
CAINAREANU, ION
2024/2025
Abstract
This thesis describes the development of a software module integrated into an Android and iOS mobile application for contact management (iCRM), with the aim of automating the enrichment of customer profile data. The project, carried out in collaboration with the company Sanmarco Informatica S.p.A. within the Business Unit 4Words, falls within the scope of Sales Force Automation solutions. The implemented module performs web scraping activities starting from data acquired through a business card, such as the email address or the associated web domain. By automatically analyzing the main pages of the company’s website, the system extracts useful information such as headquarters, contact details, industry sector, and links to social media channels. To support this process, artificial intelligence models have been integrated to improve the relevance and accuracy of text extraction. The work involved the use of Kotlin for Android development, Swift for iOS development, and Python for scraping and analysis components. The module was validated through tests on real-world scenarios and includes an interface for previewing and confirming the extracted data by the user. The project represents a practical example of integration between mobile apps, AI, and process automation.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi.pdf
Accesso riservato
Dimensione
8.19 MB
Formato
Adobe PDF
|
8.19 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/93175