This thesis examines the use of predictive algorithms in the field of public security, with a particular focus on predictive policing and the right to be forgotten. After outlining how these algorithms work and the basics of machine learning techniques, the study analyzes place-based and person-based models through case studies such as X-Law and PredPol, highlighting associated risks and critical issues. The second part focuses on the right to be forgotten, exploring its legal and jurisprudential foundations (notably Article 17 of the GDPR) and addressing the challenges related to the persistence of personal data in public systems. The final chapter explores the tensions between crime prevention and the protection of fundamental rights, with particular attention to profiling, bias, automated decision-making, and algorithmic transparency. The aim of this thesis is to assess whether it is possible to balance the effectiveness of predictive tools with respect for individual privacy and human dignity.
La tesi analizza l’uso degli algoritmi predittivi nel contesto della sicurezza pubblica, con particolare attenzione alla polizia predittiva e al diritto all’oblio. Dopo aver illustrato il funzionamento degli algoritmi e le tecniche di machine learning, si esamina l’applicazione di modelli place-based e person-based attraverso casi studio come X-Law e PredPol, evidenziandone rischi e criticità. Si approfondisce poi il diritto all’oblio, ricostruendone i fondamenti giurisprudenziali e normativi (in particolare l’art. 17 GDPR), e analizzando i problemi legati alla persistenza dei dati nei sistemi pubblici. L’ultima parte è dedicata alle tensioni tra prevenzione e tutela dei diritti fondamentali, soffermandosi su profilazione, bias, automatismi decisionali e trasparenza algoritmica. L'obiettivo dell’elaborato è valutare se sia possibile bilanciare l’efficienza degli strumenti predittivi con il rispetto della privacy e della dignità della persona.
Polizia predittiva e diritto all'oblio
ZARANTONELLO, VALERIA
2024/2025
Abstract
This thesis examines the use of predictive algorithms in the field of public security, with a particular focus on predictive policing and the right to be forgotten. After outlining how these algorithms work and the basics of machine learning techniques, the study analyzes place-based and person-based models through case studies such as X-Law and PredPol, highlighting associated risks and critical issues. The second part focuses on the right to be forgotten, exploring its legal and jurisprudential foundations (notably Article 17 of the GDPR) and addressing the challenges related to the persistence of personal data in public systems. The final chapter explores the tensions between crime prevention and the protection of fundamental rights, with particular attention to profiling, bias, automated decision-making, and algorithmic transparency. The aim of this thesis is to assess whether it is possible to balance the effectiveness of predictive tools with respect for individual privacy and human dignity.| File | Dimensione | Formato | |
|---|---|---|---|
|
Zarantonello_Valeria_tesi.pdf
Accesso riservato
Dimensione
794.26 kB
Formato
Adobe PDF
|
794.26 kB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/93781