Introduction Cystic fibrosis (CF) is a rare autosomal recessive genetic disease caused by mutations in the cystic fibrosis conductance regulator (CFTR) gene that primarily affects the respiratory and digestive tracts where the CFTR channel is principally expressed. CFTR is an ion channel residing on the apical membrane of epithelial cells and responsible for the efflux of chlorine and bicarbonate, thus regulating the hydration of the epithelial surface and the physical state of secretions. The CFTR dysfunction leads to the stagnation of thick, viscous mucus and the creation of a favorable environment for bacterial proliferation and inflammation. Currently, about 2,000 mutations of the CFTR gene have been identified, with the F508del-CFTR being the most prevalent. This mutation causes the protein to misfold, leading to its premature degradation before it can be trafficked to the cell membrane. To date, there is an FDA- and EMA-approved therapy (Trikafta®) based on the combination of CFTR modulators efficacious in increasing the amount of mature channel at the plasma membrane (correctors) and its activity once there (potentiator). However, this treatment has been approved for a limited number of specific CFTR mutations which restricts its clinical application to a subset of all CF cases. Moreover, Trikafta® was proven to induce hepatotoxicity and psychological impairment and its long-term efficacy is still being studied. Aim of the thesis The rapid degradation of CFTR and the accumulation of viscous mucus contribute to chronic inflammation and to a pro-oxidative state, associated to the formation of reactive oxygen species (ROS). This condition favours the process of lipid peroxidation that, if uncontrolled, can lead to ferroptosis, a regulated non-apoptotic cell death. Moreover, lipid peroxidation is known to alter plasma membrane composition and membrane protein stability. As a consequence, we hypothesize that restoring the redox balance could improve the current therapy by decreasing the oxidative stress and stabilizing the CFTR in the membrane. Considering that an antagonist of the thromboxane receptor A2 approved for the treatment of asthma has been shown to act as a ferroptosis inhibitor, the aim of this thesis was to investigate whether this compound could effectively improve the cellular redox state and CFTR stability in an in vitro model of CF. Materials and methods Maintenance of cell cultures, viability assays, cytofluorimetry techniques (bodipy), Western Blot, and electrophysiological analysis to study CFTR functionality (Ussing Chamber). Results Our findings demonstrate that the compound under study is effective in lowering lipid peroxidation and in protecting cells from pharmacologically-induced ferroptosis. Furthermore, we have shown for the first time that its anti-ferroptotic mechanism depends on the Ferroptosis Suppressor Protein 1 (FSP1). Ultimately, our results indicate that the tested drug improves CFTR functionality when combined with correctors.
Introduzione La fibrosi cistica (FC) è una malattia genetica autosomica recessiva causata da mutazioni del gene CFTR (Regolatore della conduttanza transmembrana della fibrosi cistica) che colpisce in particolare l’apparato respiratorio e quello digerente. Il CFTR è un canale di membrana responsabile dell’efflusso di ioni cloro e bicarbonato dalle cellule epiteliali regolando l’idratazione dell’epitelio e lo stato fisico delle secrezioni. Alterazioni del CFTR provocano il ristagno di muco denso e viscoso e la creazione di un ambiente adatto alla proliferazione batterica e all’infiammazione. Attualmente, sono state individuate circa 2.000 mutazioni del gene CFTR, tra le quali la più comune è la F508del-CFTR. Questa mutazione causa un incorretto ripiegamento della proteina, determinandone una prematura degradazione prima che essa possa raggiungere la membrana cellulare. Ad oggi esiste una terapia approvata dall’FDA e dall’EMA (Trikafta ®) basata sulla combinazione di modulatori del CFTR efficaci nell’aumentare la componente di canale in membrana (correttori) e la sua attività (potenziatori). Tuttavia, tale terapia è stata approvata solo per alcune mutazioni del canale CFTR e quindi una quota di pazienti manca ancora di un valido trattamento. Inoltre, Trikafta® comporta effetti collaterali a livello epatico e sul piano psicologico non trascurabili e la sua efficacia a lungo termine è ancora oggetto di studio. Scopo della tesi La rapida degradazione del CFTR e l’accumulo di muco denso e viscoso contribuiscono allo sviluppo di uno stato infiammatorio cronico e ad uno squilibrio pro-ossidativo associato alla formazione di radicali liberi dell’ossigeno (ROS). Questa condizione favorisce un aumento della perossidazione lipidica che, se non controllata, può portare a ferroptosi, una forma di morte cellulare regolata e non apoptotica. Inoltre, la perossidazione lipidica provoca cambiamenti nella composizione della membrana cellulare e può alterare la stabilità delle proteine di membrana. Di conseguenza, si ipotizza che il ripristino dell’equilibrio redox delle cellule possa implementare l’attuale terapia per la FC riducendo lo stress cellulare e migliorando la stabilità del canale CFTR. Recentemente è stato dimostrato che un farmaco antagonista del recettore del trombossano A2, approvato per il trattamento dell’asma, si comporta anche come un inibitore della ferroptosi; abbiamo, di conseguenza, studiato se questo composto sia efficace nel migliorare lo stato redox dei nostri modelli cellulari di FC con conseguente stabilizzazione del canale CFTR. Materiali e metodi Mantenimento di colture cellulari, saggi di vitalità, tecniche di citofluorimetria (bodipy), Western Blot, e tecniche di elettrofisiologia per lo studio di funzionalità del canale CFTR (Ussing Chamber). Risultati I risultati hanno dimostrato che il composto oggetto di studio è efficace nell’abbassare la perossidazione lipidica e nel proteggere le cellule dalla ferroptosi indotta farmacologicamente. Inoltre, il meccanismo anti-ferroptotico della molecola è stato dimostrato, per la prima volta, essere dipendente da FSP1, un potente soppressore di ferroptosi. Infine, il composto è risultato efficace nel migliorare la funzionalità del canale quando combinato con i correttori.
Aumento dell'efficacia dei correttori in Fibrosi Cistica tramite il riposizionamento di farmaci
GREGO, GIULIA
2024/2025
Abstract
Introduction Cystic fibrosis (CF) is a rare autosomal recessive genetic disease caused by mutations in the cystic fibrosis conductance regulator (CFTR) gene that primarily affects the respiratory and digestive tracts where the CFTR channel is principally expressed. CFTR is an ion channel residing on the apical membrane of epithelial cells and responsible for the efflux of chlorine and bicarbonate, thus regulating the hydration of the epithelial surface and the physical state of secretions. The CFTR dysfunction leads to the stagnation of thick, viscous mucus and the creation of a favorable environment for bacterial proliferation and inflammation. Currently, about 2,000 mutations of the CFTR gene have been identified, with the F508del-CFTR being the most prevalent. This mutation causes the protein to misfold, leading to its premature degradation before it can be trafficked to the cell membrane. To date, there is an FDA- and EMA-approved therapy (Trikafta®) based on the combination of CFTR modulators efficacious in increasing the amount of mature channel at the plasma membrane (correctors) and its activity once there (potentiator). However, this treatment has been approved for a limited number of specific CFTR mutations which restricts its clinical application to a subset of all CF cases. Moreover, Trikafta® was proven to induce hepatotoxicity and psychological impairment and its long-term efficacy is still being studied. Aim of the thesis The rapid degradation of CFTR and the accumulation of viscous mucus contribute to chronic inflammation and to a pro-oxidative state, associated to the formation of reactive oxygen species (ROS). This condition favours the process of lipid peroxidation that, if uncontrolled, can lead to ferroptosis, a regulated non-apoptotic cell death. Moreover, lipid peroxidation is known to alter plasma membrane composition and membrane protein stability. As a consequence, we hypothesize that restoring the redox balance could improve the current therapy by decreasing the oxidative stress and stabilizing the CFTR in the membrane. Considering that an antagonist of the thromboxane receptor A2 approved for the treatment of asthma has been shown to act as a ferroptosis inhibitor, the aim of this thesis was to investigate whether this compound could effectively improve the cellular redox state and CFTR stability in an in vitro model of CF. Materials and methods Maintenance of cell cultures, viability assays, cytofluorimetry techniques (bodipy), Western Blot, and electrophysiological analysis to study CFTR functionality (Ussing Chamber). Results Our findings demonstrate that the compound under study is effective in lowering lipid peroxidation and in protecting cells from pharmacologically-induced ferroptosis. Furthermore, we have shown for the first time that its anti-ferroptotic mechanism depends on the Ferroptosis Suppressor Protein 1 (FSP1). Ultimately, our results indicate that the tested drug improves CFTR functionality when combined with correctors.| File | Dimensione | Formato | |
|---|---|---|---|
|
Giulia Grego.pdf
Accesso riservato
Dimensione
1.84 MB
Formato
Adobe PDF
|
1.84 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/93891