G protein-coupled receptors (GPCRs) constitute the largest family of drug targets and regulate diverse physiological and pathological processes through heterotrimeric G proteins. Inhibiting these transducers represents a powerful strategy to study the complex and promiscuous signaling networks typical of GPCRs. The depsipeptide FR900359 (FR) is a potent inhibitor that blocks nucleotide exchange on the Gα subunit, yet its selectivity is limited to the Gq, G11, and G14 subfamilies. Since the development of equally selective inhibitors for other G protein families has proven challenging, FR’s intrinsic specificity can be exploited instead in a chemogenetic-like toolbox, where engineered FR binding sites render all G protein families directly controllable by this compound. The first step toward developing this toolbox was the rational design of Gαq mutants resistant to FR while retaining wild-type properties, a prerequisite for potential in vivo applications. This strategy was first implemented and extensively characterized for Drosophila melanogaster Gαq (DGαq) in the PhD thesis of Judith Alenfelder, conducted in the laboratory of Prof. Evi Kostenis. These studies identified mutants with slower deactivation kinetics in vitro, reflecting reduced sensitivity to human RGS proteins, yet without impairing downstream signaling. Their successful use in Drosophila confirmed their applicability in vivo and highlighted their potential. Based on these results, the same mutations were subsequently introduced into murine Gαq (mGαq), a model identical to human Gαq. This thesis is divided into two parts, both of which build on Alenfelder’s work by further characterizing mGαq using BRET techniques. The first part investigates the deactivation kinetics of the mutants, with the aim of determining whether the slower kinetics observed in DGαq mutants are also present in the murine counterpart and, if so, whether they reflect altered affinity toward RGS proteins. The second part addresses the mechanisms contributing to the basal activity of mGαq mutants, focusing on spontaneous nucleotide exchange and intrinsic GTPase activity. The results showed that the deactivation kinetics of mGαq mutants were less pronounced than in DGαq, leading to differences that were not biologically relevant. Since deactivation kinetics reflect intrinsic GTPase activity, this finding indicates that this component of basal activity is not altered in a biologically relevant way, thereby partially addressing the overall question on basal activity. However, the contribution of spontaneous GDP/GTP exchange could not be assessed under the established experimental conditions.
I recettori accoppiati a proteine G (GPCR) costituiscono la più ampia famiglia di bersagli farmacologici e regolano numerosi processi fisiologici e patologici attraverso le proteine G eterotrimeriche. L’inibizione di questi trasduttori rappresenta una strategia potente per indagare in maniera causale le reti di segnalazione complesse e spesso promiscue tipiche dei GPCR. Il depsipeptide FR900359 (FR) è un inibitore potente che blocca lo scambio nucleotidico sulla subunità Gα, ma la sua selettività è limitata alle sottofamiglie Gq, G11 e G14. Poiché lo sviluppo di inibitori altrettanto selettivi per le altre famiglie di proteine G si è rivelato complesso, la specificità intrinseca di FR può essere sfruttata nella creazione di un set di strumenti chemogenetici, in cui siti di legame ingegnerizzati rendono tutte le famiglie di proteine G direttamente controllabili da questo composto. Il primo passo verso lo sviluppo di questo strumento è stato il design razionale di mutanti di Gαq resistenti a FR ma con proprietà di tipo wild-type, requisito fondamentale per potenziali applicazioni in vivo. Questa strategia è stata inizialmente implementata e ampiamente caratterizzata per Gαq di Drosophila melanogaster (DGαq) nella tesi di dottorato di Judith Alenfelder, condotta nel laboratorio della Prof.ssa Evi Kostenis. Questi studi hanno identificato mutanti che in vitro mostravano cinetiche di disattivazione più lente, dovute a una ridotta sensibilità alle proteine regolatrici della segnalazione G (RGS) umane, senza tuttavia compromettere la segnalazione a valle. La loro applicazione con successo in Drosophila ha confermato la validità in vivo e ne ha evidenziato il potenziale. Sulla base di questi risultati, le stesse mutazioni sono state introdotte nella Gαq murina (mGαq), un modello identico alla proteina Gαq umana. La presente tesi si articola in due parti, entrambe volte ad approfondire il lavoro di Alenfelder mediante l’uso di tecniche BRET. La prima parte indaga le cinetiche di disattivazione dei mutanti, con l’obiettivo di verificare se i rallentamenti osservati nei mutanti DGαq siano mantenuti anche nella controparte murina e, in tal caso, se riflettano una diversa affinità verso le proteine RGS. La seconda parte analizza i meccanismi che contribuiscono all’attività basale dei mutanti mGαq, concentrandosi sullo scambio nucleotidico spontaneo e sull’attività GTPasica intrinseca. I risultati hanno mostrato che le cinetiche di disattivazione dei mutanti rispetto al wild type mGαq erano meno marcate rispetto a quelle di DGαq, producendo differenze non biologicamente rilevanti. Poiché le cinetiche di disattivazione riflettono l’attività GTPasica intrinseca, questo dato indica che tale componente dell’attività basale non subisce alterazioni significative, rispondendo così parzialmente alla domanda posta sull’attività basale. Al contrario, il contributo dello scambio spontaneo GDP/GTP non ha potuto essere valutato nelle condizioni sperimentali stabilite.
Investigation of murine mutant Gq proteins through BRET assay
VOLONTÈ, LORENZO
2024/2025
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of drug targets and regulate diverse physiological and pathological processes through heterotrimeric G proteins. Inhibiting these transducers represents a powerful strategy to study the complex and promiscuous signaling networks typical of GPCRs. The depsipeptide FR900359 (FR) is a potent inhibitor that blocks nucleotide exchange on the Gα subunit, yet its selectivity is limited to the Gq, G11, and G14 subfamilies. Since the development of equally selective inhibitors for other G protein families has proven challenging, FR’s intrinsic specificity can be exploited instead in a chemogenetic-like toolbox, where engineered FR binding sites render all G protein families directly controllable by this compound. The first step toward developing this toolbox was the rational design of Gαq mutants resistant to FR while retaining wild-type properties, a prerequisite for potential in vivo applications. This strategy was first implemented and extensively characterized for Drosophila melanogaster Gαq (DGαq) in the PhD thesis of Judith Alenfelder, conducted in the laboratory of Prof. Evi Kostenis. These studies identified mutants with slower deactivation kinetics in vitro, reflecting reduced sensitivity to human RGS proteins, yet without impairing downstream signaling. Their successful use in Drosophila confirmed their applicability in vivo and highlighted their potential. Based on these results, the same mutations were subsequently introduced into murine Gαq (mGαq), a model identical to human Gαq. This thesis is divided into two parts, both of which build on Alenfelder’s work by further characterizing mGαq using BRET techniques. The first part investigates the deactivation kinetics of the mutants, with the aim of determining whether the slower kinetics observed in DGαq mutants are also present in the murine counterpart and, if so, whether they reflect altered affinity toward RGS proteins. The second part addresses the mechanisms contributing to the basal activity of mGαq mutants, focusing on spontaneous nucleotide exchange and intrinsic GTPase activity. The results showed that the deactivation kinetics of mGαq mutants were less pronounced than in DGαq, leading to differences that were not biologically relevant. Since deactivation kinetics reflect intrinsic GTPase activity, this finding indicates that this component of basal activity is not altered in a biologically relevant way, thereby partially addressing the overall question on basal activity. However, the contribution of spontaneous GDP/GTP exchange could not be assessed under the established experimental conditions.| File | Dimensione | Formato | |
|---|---|---|---|
|
Volontè_Lorenzo.pdf
Accesso riservato
Dimensione
6.64 MB
Formato
Adobe PDF
|
6.64 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/94099