Anthropogenic greenhouse gas (GHG) emissions are released in large quantities every year, accelerating global warming and its outcomes, with agriculture contributing substantially to the ultimate footprint. Soil processes, exacerbated by human interference, are the underlying cause of important releases of CO2, N2O and CH4. Novel approaches are sought to limit the impact of this sector. This study focused on analyzing the interaction between biochar, a promising amendment, and fertilizer application on GHGs emissions. Biochar (BC) is a carbonaceous material that can be added to agricultural fields to boost productivity and soil health. However, conflicting literature exists on its effects on GHGs, and little is known of the BC soil-atmosphere dynamics beyond the 2-year scope. The goal was to uncover the long-term effects of biochar on gas fluxes while simultaneously creating a monitoring framework for mid-latitude agricultural fields. A portion of a long-term experiment established in 2013 was monitored during the month of June. Three gas samples were taken daily from 24 different manual chambers, covering a 10-day period after fertilization. Additional soil samples served primarily to study nitrogen forms. More environmental variables like soil temperature and water content were also monitored to provide a complete picture of the site dynamics. The effects of biochar differed greatly between the two textures. Biochar favored a 28 % reduction in CO2 fluxes for clay while it was an overall stimulant for sand. Conversely, no significant effect on nitrous oxide emissions was achieved by biochar presence, although the fluxes remained very limited. Similarly, methane production appeared unaffected by BC addition. Other parameters like nitrogen fertilization and water-filled pore space (WFPS) significantly impacted GHGs, highlighting the importance of further variables in controlling the emissions in biochar treated soils. Urea application enhanced CO2, N2O and CH4 fluxes though not in every texture, while WFPS suppressed or stimulated them. Conclusively, results suggest a long-term biochar ability to contain soil respiration from clay. Additionally, best management practices helped maintain nitrous emissions at low levels, with methane being naturally oxidated by both textures under stable humidity conditions. These initial results seem to point out that biochar, paired with careful agricultural management, can provide positive environmental benefits in some specific settings.
Le attività umane favoriscono l’aumento dell’effetto serra ed il conseguente riscaldamento globale. L’agricoltura contribuisce in maniera considerevole, specialmente attraverso il disturbo di naturali processi biogeochimici che avvengono nel suolo, tramite operazioni impattanti come le lavorazioni del terreno, le concimazioni e il pascolo. Conseguentemente, diversi gas climalteranti quali CO2, N2O e CH4 vengono rilasciati in atmosfera. Il biochar, materiale carbonaceo proveniente da pirolisi di diverse matrici biologiche, è ampiamente riconosciuto come efficace ammendante per il terreno, ma i suoi benefici nel limitare il rilascio di gas serra non sono univocamente chiariti. Questa tesi vuole verificare quali siano gli effetti del biochar sui fenomeni emissivi dopo più di dodici anni dalla sua applicazione. Al contempo, lo studio si ripropone di creare le basi per un monitoraggio specifico del sito, tramite l’impiego di un innovativo sistema di analisi gascromatografica. 24 lisimetri coltivati a Zea mays L. sono stati selezionati in una prova di lungo periodo per raccogliere campioni gassosi tramite camere di analisi manuali. Le forme inorganiche e organiche dell’azoto nel suolo, la temperatura e water-filled pore space (WFPS) sono stati contemporaneamente valutati tramite ulteriori campionamenti ambientali. Una riduzione significativa dei flussi di CO2 (-28 %) si è registrata grazie al biochar nei terreni argillosi, mentre nella sabbia l’effetto complessivo è stato opposto. La potenzialità di limitare il protossido d’azoto da suoli agricoli non è invece stata statisticamente comprovata, mentre effetti minimali si sono registrati riguardo i flussi di metano. Altri fattori ambientali e gestionali quali la concimazione e l’umidità del suolo hanno invece giocato un ruolo significativo nell’andamento dei flussi. In particolare, la fertilizzazione ha favorito le dinamiche emissive di quasi tutti i gas mentre WFPS ha agito come soppressore o stimolatore di queste ultime. I risultati sembrano suggerire una potenziale capacità di mitigazione climatica a lungo termine da parte del biochar, oltre ad evidenziare come le dinamiche emissive siano complesse, interconnesse e dipendenti da una buona pratica agricola. Ulteriori studi possono essere sviluppati per validare le potenzialità e conclusioni inferite sinora su questo materiale.
Assessing biochar role on CO₂, N₂O and CH₄ emissions in two agricultural soil types
RAMPAZZO, DAVIDE
2024/2025
Abstract
Anthropogenic greenhouse gas (GHG) emissions are released in large quantities every year, accelerating global warming and its outcomes, with agriculture contributing substantially to the ultimate footprint. Soil processes, exacerbated by human interference, are the underlying cause of important releases of CO2, N2O and CH4. Novel approaches are sought to limit the impact of this sector. This study focused on analyzing the interaction between biochar, a promising amendment, and fertilizer application on GHGs emissions. Biochar (BC) is a carbonaceous material that can be added to agricultural fields to boost productivity and soil health. However, conflicting literature exists on its effects on GHGs, and little is known of the BC soil-atmosphere dynamics beyond the 2-year scope. The goal was to uncover the long-term effects of biochar on gas fluxes while simultaneously creating a monitoring framework for mid-latitude agricultural fields. A portion of a long-term experiment established in 2013 was monitored during the month of June. Three gas samples were taken daily from 24 different manual chambers, covering a 10-day period after fertilization. Additional soil samples served primarily to study nitrogen forms. More environmental variables like soil temperature and water content were also monitored to provide a complete picture of the site dynamics. The effects of biochar differed greatly between the two textures. Biochar favored a 28 % reduction in CO2 fluxes for clay while it was an overall stimulant for sand. Conversely, no significant effect on nitrous oxide emissions was achieved by biochar presence, although the fluxes remained very limited. Similarly, methane production appeared unaffected by BC addition. Other parameters like nitrogen fertilization and water-filled pore space (WFPS) significantly impacted GHGs, highlighting the importance of further variables in controlling the emissions in biochar treated soils. Urea application enhanced CO2, N2O and CH4 fluxes though not in every texture, while WFPS suppressed or stimulated them. Conclusively, results suggest a long-term biochar ability to contain soil respiration from clay. Additionally, best management practices helped maintain nitrous emissions at low levels, with methane being naturally oxidated by both textures under stable humidity conditions. These initial results seem to point out that biochar, paired with careful agricultural management, can provide positive environmental benefits in some specific settings.| File | Dimensione | Formato | |
|---|---|---|---|
|
Rampazzo_Davide.pdf
Accesso riservato
Dimensione
3.64 MB
Formato
Adobe PDF
|
3.64 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/95597