Starting from the second half of the 1970s, electronics began a path of increasingly deep penetration into everyday life. What at the time seemed like a slow and silent revolution has, within just a few decades, turned into a true technological colonization: today, every aspect of life is in some way interconnected with electronic systems. From home automation to industrial automation, from telecommunications to medical diagnostics, electronics are no longer just tools, but often the very heart of how things function. It is precisely in the clinical-biomedical field, one of the most promising and rapidly expanding sectors, that I chose to focus my thesis project. The idea was born from a simple reflection: how useful could a system be that, with just a handful of components, is able to monitor a vital function such as breathing? From this question, I began developing a working prototype for the detection and analysis of respiratory rhythm using an NTC sensor (an acronym for Negative Temperature Coefficient). The NTC sensor has the advantages of being inexpensive, compact, and easy to handle. Its operating principle is as intuitive as it is effective: its electrical resistance decreases exponentially with increasing temperature. When placed close to the mouth, the sensor can detect thermal variations caused by exhalation and inhalation. In other words, it becomes possible to “see” breathing through temperature. To give concreteness to the system, I implemented an interface in MATLAB capable of acquiring, processing, and displaying in real time the values provided by the sensor, thanks to the mediation of a data acquisition board (DAQ). This allowed me to generate a graph of temperature over time, from which it was possible to extract meaningful information such as signal peaks (corresponding to breaths) and thus calculate the respiratory period, and from it, the frequency. One of the fundamental principles I wanted to preserve from the very beginning was accessibility: the project was carried out exclusively with readily available hardware and software components, with the goal of making it replicable by students, independent researchers, or enthusiasts. The use of MATLAB, combined with a compatible acquisition board and a simple thermal sensor, makes the system extremely flexible and adaptable to broader contexts, such as education, research, or prototyping of low-cost medical devices. During the development phase, I realized that such a system, despite its simplicity, could represent an effective solution in contexts where advanced instrumentation is not available: for example, medical campaigns in remote areas, support for home-based respiratory physiotherapy, or even as tools integrated into smart environments (such as bedrooms or gyms). Therefore, this thesis is not just an engineering exercise, but also a small experiment in technological democratization, an invitation to explore how, with limited resources and a great deal of curiosity, it is possible to build something useful, concrete, and scientifically sound.
A partire dalla seconda metà degli anni ’70, l’elettronica ha iniziato un cammino di penetrazione sempre più profondo all’interno della quotidianità. Quella che all’epoca sembrava una lenta rivoluzione silenziosa è diventata, nel giro di pochi decenni, una vera e propria colonizzazione tecnologica: oggi, ogni ambito della vita è in qualche modo interconnesso con sistemi elettronici. Dalla domotica all’automazione industriale, dalle telecomunicazioni alla diagnostica medica, l’elettronica non è più solo uno strumento, ma spesso è il cuore stesso del funzionamento. È proprio nell’ambito clinico-biomedico, uno dei settori più promettenti e in continua espansione, che ho deciso di calarmi per il mio progetto di tesi. L’idea è nata da una riflessione semplice: quanto può essere utile un sistema che, con pochissimi componenti, sia in grado di monitorare una funzione vitale come il respiro? Da qui, ho avviato lo sviluppo di un prototipo funzionante per la rilevazione e l’analisi del ritmo respiratorio utilizzando un sensore NTC (acronimo di Negative Temperature Coefficient). Il sensore NTC ha il vantaggio di essere economico, compatto e semplice da gestire. Il suo principio di funzionamento è tanto intuitivo quanto efficace: la resistenza elettrica che presenta varia al variare della temperatura, secondo una legge esponenziale decrescente. Se posizionato in prossimità della bocca, questo sensore è in grado di rilevare le variazioni termiche indotte dall’espirazione e dall’inspirazione. In altri termini, è possibile “vedere” il respiro attraverso la temperatura. Per dare concretezza al sistema, ho implementato un’interfaccia in ambiente MATLAB in grado di leggere, elaborare e visualizzare in tempo reale i valori forniti dal sensore, grazie all’intermediazione di una scheda di acquisizione dati (DAQ). Questo mi ha permesso di generare un grafico dell’andamento della temperatura nel tempo, da cui è stato possibile estrapolare informazioni significative come le creste dei segnali (che corrispondono ai picchi respiratori) e calcolare quindi il periodo respiratorio, e da esso la frequenza. Uno degli aspetti fondamentali che ho voluto preservare fin dall’inizio è stato il principio di accessibilità: il progetto è stato realizzato esclusivamente con strumenti e componenti hardware/software facilmente reperibili, con l’obiettivo di renderlo replicabile da parte di studenti, ricercatori indipendenti o appassionati. L’uso di MATLAB, combinato con una scheda di acquisizione compatibile e un semplice sensore termico, rende il sistema estremamente flessibile e adattabile a contesti più ampi, come la didattica, la ricerca, o la prototipazione di dispositivi medici a basso costo. Durante la fase di sviluppo, mi sono reso conto che un sistema simile, pur nella sua semplicità, potrebbe rappresentare una soluzione efficace in contesti in cui non è disponibile strumentazione avanzata: penso ad esempio a campagne mediche in aree remote, a supporti per la fisioterapia respiratoria domiciliare, o addirittura a strumenti integrabili in ambienti smart (come camere da letto o palestre). Questa tesi non è quindi solo un esercizio ingegneristico, ma anche un piccolo esperimento di democratizzazione tecnologica, un invito a esplorare come con poche risorse e tanta curiosità si possa costruire qualcosa di utile, concreto e scientificamente fondato.
Monitoraggio del Ritmo Respiratorio con Sensore NTC
FERRARI, LORENZO
2024/2025
Abstract
Starting from the second half of the 1970s, electronics began a path of increasingly deep penetration into everyday life. What at the time seemed like a slow and silent revolution has, within just a few decades, turned into a true technological colonization: today, every aspect of life is in some way interconnected with electronic systems. From home automation to industrial automation, from telecommunications to medical diagnostics, electronics are no longer just tools, but often the very heart of how things function. It is precisely in the clinical-biomedical field, one of the most promising and rapidly expanding sectors, that I chose to focus my thesis project. The idea was born from a simple reflection: how useful could a system be that, with just a handful of components, is able to monitor a vital function such as breathing? From this question, I began developing a working prototype for the detection and analysis of respiratory rhythm using an NTC sensor (an acronym for Negative Temperature Coefficient). The NTC sensor has the advantages of being inexpensive, compact, and easy to handle. Its operating principle is as intuitive as it is effective: its electrical resistance decreases exponentially with increasing temperature. When placed close to the mouth, the sensor can detect thermal variations caused by exhalation and inhalation. In other words, it becomes possible to “see” breathing through temperature. To give concreteness to the system, I implemented an interface in MATLAB capable of acquiring, processing, and displaying in real time the values provided by the sensor, thanks to the mediation of a data acquisition board (DAQ). This allowed me to generate a graph of temperature over time, from which it was possible to extract meaningful information such as signal peaks (corresponding to breaths) and thus calculate the respiratory period, and from it, the frequency. One of the fundamental principles I wanted to preserve from the very beginning was accessibility: the project was carried out exclusively with readily available hardware and software components, with the goal of making it replicable by students, independent researchers, or enthusiasts. The use of MATLAB, combined with a compatible acquisition board and a simple thermal sensor, makes the system extremely flexible and adaptable to broader contexts, such as education, research, or prototyping of low-cost medical devices. During the development phase, I realized that such a system, despite its simplicity, could represent an effective solution in contexts where advanced instrumentation is not available: for example, medical campaigns in remote areas, support for home-based respiratory physiotherapy, or even as tools integrated into smart environments (such as bedrooms or gyms). Therefore, this thesis is not just an engineering exercise, but also a small experiment in technological democratization, an invitation to explore how, with limited resources and a great deal of curiosity, it is possible to build something useful, concrete, and scientifically sound.| File | Dimensione | Formato | |
|---|---|---|---|
|
TESI.pdf
accesso aperto
Dimensione
1.56 MB
Formato
Adobe PDF
|
1.56 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/97700