This study analyzes the role of BECCS (Bioenergy with Carbon Capture and Storage) technology as a tool for the decarbonization of energy systems, with particular reference to the Swedish context and the KVV8 combined heat and power (CHP) plant in Stockholm. The main objective is to assess the techno-economic feasibility and energy impact of integrating a carbon capture and storage system into a biomass-fueled CHP plant, identifying the potential and critical issues associated with the application of this technology within an urban district heating network. The adopted methodology is based on a systematic review of the scientific literature, conducted primarily through the ScienceDirect database, and on the analysis of real technical data from experimental and simulation studies on the KVV8 plant. A reference model was developed considering the plant configuration, the post-combustion capture process using hot potassium carbonate (K₂CO₃), and key energy and economic performance indicators such as overall efficiency, energy penalty, Net Present Value (NPV), and Levelized Cost of Energy (LCOE). In parallel, a techno-socio-economic analysis (TSEA) was carried out to include the environmental and employment benefits derived from negative emissions. The results show that integrating the BECCS system into the KVV8 CHP plant leads to a limited reduction in overall efficiency, with an energy penalty between 2% and 4%, while heat recovery from the capture process allows the system to maintain high performance levels. The energy cost of capture is estimated between €2 and €5 per ton of CO₂, making the solution competitive compared to other CCS systems. From an economic standpoint, the TSEA evaluation indicates that, when considering environmental and social benefits, the project is largely sustainable, with a positive net present value of approximately 2.3 billion USD. In conclusion, the analysis confirms that the implementation of BECCS technology in CHP plants represents a technically reliable and economically advantageous strategy to achieve net negative emissions and significantly contribute to Sweden’s climate neutrality goals set for 2045.
Il presente lavoro analizza il ruolo della tecnologia BECCS (Bioenergy with Car-bon Capture and Storage) come strumento per la decarbonizzazione dei sistemi energetici, con particolare riferimento al contesto svedese e all’impianto di cogenerazione KVV8 di Stoccolma. L’obiettivo principale è valutare la fattibilità tecnico-economica e l’impatto energetico dell’integrazione di un sistema di cattura e stoccaggio della CO₂ in un impianto cogenerativo alimentato a biomassa, individuando le potenzialità e le criticità connesse all’applicazione di tale tecnologia in un sistema di teleriscaldamento urbano. La metodologia adottata si basa su una revisione sistematica della letteratura scientifica, condotta principalmente tramite il database ScienceDirect, e sull’analisi di dati tecnici reali provenienti da studi sperimentali e simulativi sull’impianto KVV8. È stato sviluppato un modello di riferimento che considera la configurazione impiantistica, il processo di cattura post-combustione mediante carbonato di potassio caldo (K₂CO₃), e gli indicatori di prestazione energetica ed economica, quali efficienza globale, penalità energetica, Valore Attuale Netto (VAN) e Costo Livellato dell’Energia (LCOE). Parallelamente è stata condotta un’analisi tecnico-socio-economica (TSEA) per includere i benefici ambientali e occupazionali derivanti dalle emissioni negative. I risultati ottenuti evidenziano che l’integrazione del sistema BECCS nel CHP KVV8 comporta una riduzione limitata dell’efficienza complessiva, con una penalità energetica compresa tra il 2% e il 4%, mentre il recupero di calore dal processo di cattura consente di mantenere elevate prestazioni del sistema. Il costo energetico della cattura è stimato tra 2 e 5 €/tCO₂, rendendo la soluzione competitiva rispetto ad altri sistemi CCS. Dal punto di vista economico, la valutazione TSEA mostra che, considerando i benefici ambientali e sociali, il progetto risulta ampiamente sostenibile, con un valore attuale net-to positivo pari a circa 2,3 miliardi di dollari. In conclusione, l’analisi conferma che l’implementazione della tecnologia BECCS in impianti cogenerativi rappresenta una strategia tecnicamente affidabile ed economica-mente vantaggiosa per conseguire emissioni nette negative e contribuire in modo significativo agli obiettivi di neutralità climatica fissati dalla Svezia per il 2045.
Il ruolo della BECCS nella decarbonizzazione: co-generazione a emissioni negative in Svezia
MASTROTTO, FRANCESCO
2024/2025
Abstract
This study analyzes the role of BECCS (Bioenergy with Carbon Capture and Storage) technology as a tool for the decarbonization of energy systems, with particular reference to the Swedish context and the KVV8 combined heat and power (CHP) plant in Stockholm. The main objective is to assess the techno-economic feasibility and energy impact of integrating a carbon capture and storage system into a biomass-fueled CHP plant, identifying the potential and critical issues associated with the application of this technology within an urban district heating network. The adopted methodology is based on a systematic review of the scientific literature, conducted primarily through the ScienceDirect database, and on the analysis of real technical data from experimental and simulation studies on the KVV8 plant. A reference model was developed considering the plant configuration, the post-combustion capture process using hot potassium carbonate (K₂CO₃), and key energy and economic performance indicators such as overall efficiency, energy penalty, Net Present Value (NPV), and Levelized Cost of Energy (LCOE). In parallel, a techno-socio-economic analysis (TSEA) was carried out to include the environmental and employment benefits derived from negative emissions. The results show that integrating the BECCS system into the KVV8 CHP plant leads to a limited reduction in overall efficiency, with an energy penalty between 2% and 4%, while heat recovery from the capture process allows the system to maintain high performance levels. The energy cost of capture is estimated between €2 and €5 per ton of CO₂, making the solution competitive compared to other CCS systems. From an economic standpoint, the TSEA evaluation indicates that, when considering environmental and social benefits, the project is largely sustainable, with a positive net present value of approximately 2.3 billion USD. In conclusion, the analysis confirms that the implementation of BECCS technology in CHP plants represents a technically reliable and economically advantageous strategy to achieve net negative emissions and significantly contribute to Sweden’s climate neutrality goals set for 2045.| File | Dimensione | Formato | |
|---|---|---|---|
|
Mastrotto_Francesco.pdf
Accesso riservato
Dimensione
1.41 MB
Formato
Adobe PDF
|
1.41 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/97739