Large Language Models (LLMs) represent one of the most recent innovations in artificial intelligence applied to medicine. This paper analyzes their potential in the management of diabetes mellitus, a chronic disease with a high prevalence worldwide. After an overview of the functioning and evolution of LLMs, the main applications in diabetes are examined: risk prediction, treatment plan optimization, continuous glucose monitoring data analysis, and clinical decision support. While highlighting limitations and ethical challenges, the paper shows how LLMs can contribute to more personalized, efficient, and predictive medicine, improving the quality of care for people with diabetes.
I Large Language Models (LLM) rappresentano una delle più recenti innovazioni dell’intelligenza artificiale applicata alla medicina. Questo elaborato analizza il loro potenziale nella gestione del diabete mellito, patologia cronica ad alta diffusione mondiale. Dopo una panoramica sul funzionamento e sull’evoluzione dei LLM, vengono esaminate le principali applicazioni in ambito diabetologico: previsione del rischio, ottimizzazione dei piani terapeutici, analisi dei dati di monitoraggio continuo del glucosio e supporto decisionale clinico. Pur evidenziando limiti e sfide etiche, il lavoro mostra come i LLM possano contribuire a una medicina più personalizzata, efficiente e predittiva, migliorando la qualità dell’assistenza alle persone affette da diabete.
Applicazioni dei Large Language Models nella gestione del diabete
TOPINI, FRANCESCA
2024/2025
Abstract
Large Language Models (LLMs) represent one of the most recent innovations in artificial intelligence applied to medicine. This paper analyzes their potential in the management of diabetes mellitus, a chronic disease with a high prevalence worldwide. After an overview of the functioning and evolution of LLMs, the main applications in diabetes are examined: risk prediction, treatment plan optimization, continuous glucose monitoring data analysis, and clinical decision support. While highlighting limitations and ethical challenges, the paper shows how LLMs can contribute to more personalized, efficient, and predictive medicine, improving the quality of care for people with diabetes.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi Francesca Topini.pdf
accesso aperto
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/97807