In the industrial production, the proper design of assembly lines plays a crucial role in ensuring efficiency, production flow continuity, and resource optimization. In particular, the sizing of buffers—areas or devices intended for the temporary accumulation of products between two successive stations—is a key factor in balancing the line, reducing downtime, and improving overall plant performance. Production lines can be classified into two main categories: synchronous and asynchronous. Synchronous lines are characterized by operating stations that work in a coordinated and simultaneous manner: each phase of the process progresses at the same pace, and any stoppage of one station affects the entire line. In contrast, in asynchronous lines, each station operates independently, with intermediate buffers that allow the time variations between the different phases to be absorbed, making the system more flexible and resilient to local slowdowns or failures. In this context, the buffer plays a fundamental role in asynchronous lines, as it allows for partial decoupling of the stations and ensures greater production continuity. However, its sizing is not trivial: a buffer that is too small can cause blockages or interruptions, while oversizing it leads to wasted space and resources (e.g., management, operation, and maintenance costs). Traditionally, buffer sizing is performed using analytical methods, based on mathematical models and simplifications of real processes. Although these methods are useful for providing initial estimates, they often fail to capture the complexity and dynamic variability typical of modern production plants. For this reason, advanced simulation tools, such as the FlexSim simulation software, are becoming increasingly popular. These tools allow for the precise modeling of the behavior of a production system and the evaluation of its performance in realistic scenarios. The objective of this thesis is to compare two approaches to sizing buffers in a crostini production plant: one based on traditional analytical modeling, the other on dynamic simulation using Flexsim. Through a comparative analysis, we intend to demonstrate which of the two approaches optimizes the space required by the buffer between two production stages of an asynchronous line.
Nell’ambito della produzione industriale, la corretta progettazione delle linee di assemblag- gio riveste un ruolo cruciale per garantire l’efficienza, la continuità del flusso produttivo e l’ottimizzazione delle risorse. In particolare, il dimensionamento dei buffer, ovvero le aree o i dispositivi destinati all’accumulo temporaneo di prodotti tra due stazioni successive, rappresenta un elemento determinante per il bilanciamento della linea, la riduzione dei tempi di inattività e il miglioramento delle prestazioni complessive dell’impianto. Le linee di produzione possono essere classificate in due principali categorie: sincrone e asincrone. Le linee sincrone sono caratterizzate da stazioni operative che lavorano in modo coordi- nato e simultaneo: ogni fase del processo avanza allo stesso ritmo e un’eventuale fermata di una stazione si ripercuote sull’intera linea. Al contrario, nelle linee asincrone, ogni stazione opera in modo indipendente, con la presenza di buffer intermedi che permettono di assorbire le variazioni di tempo tra le diverse fasi, rendendo il sistema più flessibile e resiliente a rallentamenti o guasti locali. In questo contesto, il buffer assume un ruolo fondamentale nelle linee asincrone, in quanto consente di disaccoppiare parzialmente le stazioni e garantire una maggiore continuità produttiva. Tuttavia, il suo dimensionamen- to non è banale: un buffer troppo piccolo può causare blocchi o interruzioni, mentre un sovradimensionamento dello stesso comporta sprechi di spazio e risorse (es: costi di ge- stione, operatività e di manutenzione). Tradizionalmente, il dimensionamento dei buffer viene effettuato tramite metodi analitici, basati su modelli matematici e semplificazioni dei processi reali. Sebbene tali metodi siano utili per fornire stime iniziali, spesso non riescono a cogliere la complessità e la variabilità dinamica tipiche degli impianti produttivi moderni. Per questo motivo, si stanno sempre più diffondendo strumenti di simulazione avanzata, come ad esempio il software simulativo FlexSim, che permettono di modellare con precisione il comportamento di un sistema produttivo e di valutarne le prestazioni in scenari realistici. L’obiettivo di questa tesi è confrontare due approcci al dimensionamento dei buffer in un impianto per la produzione di crostini: uno basato su una modellazione analitica tradizionale, l’altro su una simulazione dinamica realizzata tramite Flexsim At- traverso un’analisi comparativa, si intende dimostrare quali dei due approcci ottimizza lo spazio richiesto dal buffer tra due stadi produttivi di una linea asincrona.
Dimensionamento di una linea automatizzata per la produzione di crostini soggetta a micro-fermate tramite simulazione ad eventi discreti
FURLANELLO, MATTEO
2024/2025
Abstract
In the industrial production, the proper design of assembly lines plays a crucial role in ensuring efficiency, production flow continuity, and resource optimization. In particular, the sizing of buffers—areas or devices intended for the temporary accumulation of products between two successive stations—is a key factor in balancing the line, reducing downtime, and improving overall plant performance. Production lines can be classified into two main categories: synchronous and asynchronous. Synchronous lines are characterized by operating stations that work in a coordinated and simultaneous manner: each phase of the process progresses at the same pace, and any stoppage of one station affects the entire line. In contrast, in asynchronous lines, each station operates independently, with intermediate buffers that allow the time variations between the different phases to be absorbed, making the system more flexible and resilient to local slowdowns or failures. In this context, the buffer plays a fundamental role in asynchronous lines, as it allows for partial decoupling of the stations and ensures greater production continuity. However, its sizing is not trivial: a buffer that is too small can cause blockages or interruptions, while oversizing it leads to wasted space and resources (e.g., management, operation, and maintenance costs). Traditionally, buffer sizing is performed using analytical methods, based on mathematical models and simplifications of real processes. Although these methods are useful for providing initial estimates, they often fail to capture the complexity and dynamic variability typical of modern production plants. For this reason, advanced simulation tools, such as the FlexSim simulation software, are becoming increasingly popular. These tools allow for the precise modeling of the behavior of a production system and the evaluation of its performance in realistic scenarios. The objective of this thesis is to compare two approaches to sizing buffers in a crostini production plant: one based on traditional analytical modeling, the other on dynamic simulation using Flexsim. Through a comparative analysis, we intend to demonstrate which of the two approaches optimizes the space required by the buffer between two production stages of an asynchronous line.| File | Dimensione | Formato | |
|---|---|---|---|
|
tesiunipdmatteofurlanello-1.pdf
accesso aperto
Dimensione
4.78 MB
Formato
Adobe PDF
|
4.78 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/97987