The thesis examines the role of hydrogen as an energy carrier in the transition to low-emission systems, highlighting its benefits and drawbacks across the entire value chain: production, storage, transport, and end uses. On the production side, methane steam reforming and renewables-powered electrolysis are compared, with a focus on fundamentals, energy balances, and PEM cells, clarifying when ‘green’ hydrogen can be competitive and genuinely decarbonizing. The storage analysis covers high-pressure gaseous solutions, cryogenic liquefaction, and metal hydrides, along with the associated trade-offs among energy density, safety, and costs. With reference to the Italian context, the feasibility of blending in the gas grid (SNAM tests at 5–10% by volume) is presented as a gradual and safe pathway to integrate H₂ into existing infrastructure. The applied section showcases industrial best practices: Baxi, with 100% hydrogen domestic boilers and a ‘hydrogen-ready/blend-ready’ strategy—including conversion via a dedicated kit; and the Pietro Fiorentini/Hyter group, with modular electrolyzers (AEMWE/PEM) and the Hydrogen Innovation Lab for testing H₂/NG blends and grid devices. Overall, the thesis concludes that hydrogen is a viable pathway when embedded within an integrated energy system: phased adoption, renewable-based production, ready-for-hydrogen equipment, and industrial scalability are the key conditions for a meaningful climate impact.
La tesi analizza il ruolo dell’idrogeno come vettore energetico nella transizione verso sistemi a basse emissioni, evidenziandone benefici e criticità lungo l’intera filiera: produzione, stoccaggio, trasporto e usi finali. Sul fronte della produzione, vengono messi a confronto lo steam reforming del metano e l’elettrolisi alimentata da rinnovabili, con focus su principi, bilanci energetici e celle PEM, chiarendo quando l’idrogeno “verde” può risultare competitivo e realmente decarbonizzante. L’analisi dello stoccaggio tratta soluzioni gassose ad alta pressione, liquefazione criogenica e idruri metallici, con i relativi compromessi tra densità energetica, sicurezza e costi. Un richiamo al contesto italiano mostra la praticabilità del blending in rete gas (test SNAM al 5–10% in volume), quale percorso graduale e sicuro di integrazione dell’H₂ nelle infrastrutture esistenti. La parte applicativa presenta casi industriali “best practice”: Baxi, con caldaie domestiche alimentate al 100% a idrogeno e la strategia “hydrogen-ready/blend-ready”, inclusa la riconversione tramite kit dedicato; e il gruppo Pietro Fiorentini/Hyter, con elettrolizzatori modulari (AEMWE/PEM) e l’Hydrogen Innovation Lab per prove su miscele H₂/NG e dispositivi di rete. Nel complesso, la tesi conclude che l’idrogeno è una strada praticabile se inserito in un sistema energetico integrato: adozione graduale, produzione da rinnovabili, apparecchiature predisposte e scalabilità industriale sono le condizioni chiave per un impatto climatico significativo.
IDROGENO: ENERGIA PULITA PER UN FUTURO SOSTENIBILE
GHENO, ANDREA
2024/2025
Abstract
The thesis examines the role of hydrogen as an energy carrier in the transition to low-emission systems, highlighting its benefits and drawbacks across the entire value chain: production, storage, transport, and end uses. On the production side, methane steam reforming and renewables-powered electrolysis are compared, with a focus on fundamentals, energy balances, and PEM cells, clarifying when ‘green’ hydrogen can be competitive and genuinely decarbonizing. The storage analysis covers high-pressure gaseous solutions, cryogenic liquefaction, and metal hydrides, along with the associated trade-offs among energy density, safety, and costs. With reference to the Italian context, the feasibility of blending in the gas grid (SNAM tests at 5–10% by volume) is presented as a gradual and safe pathway to integrate H₂ into existing infrastructure. The applied section showcases industrial best practices: Baxi, with 100% hydrogen domestic boilers and a ‘hydrogen-ready/blend-ready’ strategy—including conversion via a dedicated kit; and the Pietro Fiorentini/Hyter group, with modular electrolyzers (AEMWE/PEM) and the Hydrogen Innovation Lab for testing H₂/NG blends and grid devices. Overall, the thesis concludes that hydrogen is a viable pathway when embedded within an integrated energy system: phased adoption, renewable-based production, ready-for-hydrogen equipment, and industrial scalability are the key conditions for a meaningful climate impact.| File | Dimensione | Formato | |
|---|---|---|---|
|
Gheno_Andrea.pdf
Accesso riservato
Dimensione
2.38 MB
Formato
Adobe PDF
|
2.38 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/97988