Asthma is a chronic disease whose prevalence and severity are partly determined by a complex interaction of environmental, biological, and climatic factors.. Understanding the spatial distribution of this disease in relation to these factors is essential for better understanding and managing the phenomenon at local level. This study aims to analyze and predict the spatial association between the total quantity of anti-asthma drugs sold per inhabitant, which serves as a proxy for the cumulative annual incidence of asthma in Italy.The analysis investigates the association of this quantity with various environmental and climatic covariates, including atmospheric pollen concentration. The primary objective is to identify the variables that exert the greatest influence on the quantity of drugs sold and, consequently, on the manifestation of the disease. The study was conducted using geostatistical methods (Kriging) for prediction, applying aggregated data for the entire year 2023 directly to monitoring points with specific geographical coordinates across the country. This punctual geostatistical approach allows us to overcome the limitations of administrative aggregation and produce a robust and continuous spatial prediction of the phenomenon.
L’asma è una patologia cronica la cui prevalenza e acutizzazione sono influenzate da una complessa interazione di fattori ambientali, biologici e climatici. Comprendere la distribuzione spaziale di questa patologia in relazione a tali fattori è fondamentale per una migliore comprensione e gestione del fenomeno sul territorio. Il presente lavoro si propone di analizzare e predire la distribuzione spaziale della quantità di farmaci anti-asmatici venduti per abitante che funge da proxy per l’incidenza cumulativa annuale dell’asma in Italia. L’analisi indaga l’associazione di questa quantità con diverse covariate ambientali e climatiche, tra cui la concentrazione atmosferica dei pollini. L’obiettivo primario è identificare le variabili che esercitano la maggiore influenza sulla quantità di farmaci venduti e, di conseguenza, sulla manifestazione della patologia. L’indagine è stata condotta utilizzando metodi geostatistici (Kriging) per la previsione, applicando i dati aggregati per l’intero anno 2023 direttamente a punti di monitoraggio con coordinate geografiche specifiche sul territorio nazionale. Questo approccio geostatistico puntuale consente di superare i limiti dell’aggregazione amministrativa e di produrre una predizione spaziale robusta e continua del fenomeno.
Pollini e asma: uno studio territoriale basato sui dati di acquisto farmaceutico
MANIERO, FRANCESCA
2024/2025
Abstract
Asthma is a chronic disease whose prevalence and severity are partly determined by a complex interaction of environmental, biological, and climatic factors.. Understanding the spatial distribution of this disease in relation to these factors is essential for better understanding and managing the phenomenon at local level. This study aims to analyze and predict the spatial association between the total quantity of anti-asthma drugs sold per inhabitant, which serves as a proxy for the cumulative annual incidence of asthma in Italy.The analysis investigates the association of this quantity with various environmental and climatic covariates, including atmospheric pollen concentration. The primary objective is to identify the variables that exert the greatest influence on the quantity of drugs sold and, consequently, on the manifestation of the disease. The study was conducted using geostatistical methods (Kriging) for prediction, applying aggregated data for the entire year 2023 directly to monitoring points with specific geographical coordinates across the country. This punctual geostatistical approach allows us to overcome the limitations of administrative aggregation and produce a robust and continuous spatial prediction of the phenomenon.| File | Dimensione | Formato | |
|---|---|---|---|
|
Maniero_Francesca.pdf
accesso aperto
Dimensione
5.62 MB
Formato
Adobe PDF
|
5.62 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/98996