In the field of regenerative medicine and reconstructive surgery, tissue engineering represents a rapidly expanding frontier aimed at developing biological substitutes for the restoration of complex organs such as the larynx, whose functionality is often compromised by cancer or trauma. The use of decellularized scaffolds is proposed as a valid alternative to traditional grafts, aiming to recreate a physiological microenvironment suitable for regeneration and to overcome the limitations related to donor availability and adverse reactions. In this context, the evaluation of in vivo biocompatibility and foreign body response plays a crucial role, as the interaction between the decellularized graft and the host determines the integration or rejection of the implant. In this study, conducted at the Bioacoustics Laboratory of the Department of Neuroscience at the University of Padua, the tissue response to decellularized porcine cartilage scaffolds implanted in Sprague Dawley rat animal model was evaluated. The investigation combined traditional histological techniques and immunohistochemistry to characterize morphological and inflammatory evolution at four and eight weeks post-implantation. The analyses were supported by advanced computational methodologies, including ImageJ morphometry software and a customized MATLAB script for automated quantification of cellular infiltrate and inflammatory markers. The results showed a significant evolution of the interface between host and scaffold, confirmed by morphometric analysis that detected an increase in margin roughness at 8 weeks (p<0.001), indicative of progressive cell colonization and biological integration. Quantitative statistical analysis also showed a significant decrease in the macrophage population (F4/80) between 4 and 8 weeks (p < 0.001), suggesting resolution of the acute inflammatory phase. At the same time, cytokine mediators (IL-6, TNFα) showed controlled persistence with no significant changes between the two time points (p > 0.05), functional to tissue remodeling rather than adverse fibrotic processes. The integrated approach combining biological and computational analysis has made it possible to validate graft integration and refine the immunohistochemical investigations needed to characterize the host response. The objective parameters provided by computational analysis offer robust tools for studying biocompatibility, laying the foundations for future applications in various anatomical areas and for precision regenerative medicine.
Nel panorama della medicina rigenerativa e della chirurgia ricostruttiva, l'ingegneria tissutale rappresenta una frontiera in rapida espansione, volta allo sviluppo di sostituti biologici per il ripristino di organi complessi come la laringe, la cui funzionalità è spesso compromessa da patologie oncologiche o traumi. L'uso di scaffold decellularizzati si propone come valida alternativa agli innesti tradizionali, mirando a ricreare un microambiente fisiologico idoneo alla rigenerazione e a superare le limitazioni legate alla disponibilità di donatori e alle reazioni avverse. In questo contesto, la valutazione della biocompatibilità in vivo e della risposta da corpo estraneo assume un ruolo cruciale, poiché l’interazione tra innesto decellularizzato e ospite determina l’integrazione o il rigetto dell’impianto. In questo studio, condotto presso il Laboratorio di Bioacustica del Dipartimento di Neuroscienze dell’Università di Padova, è stata valutata la risposta tissutale a scaffold cartilaginei suini decellularizzati impiantati in un modello animale di ratto Sprague Dawley. L’indagine ha combinato tecniche istologiche tradizionali e immunoistochimica per caratterizzare l’evoluzione morfologica e infiammatoria nei time point di quattro e otto settimane post-impianto. Le analisi sono state supportate da metodologie computazionali avanzate, tra cui il software di morfometria ImageJ e uno script personalizzato in ambiente MATLAB per la quantificazione automatizzata dell’infiltrato cellulare e dei marker infiammatori. I risultati hanno evidenziato una significativa evoluzione dell’interfaccia tra ospite e scaffold, confermata dall'analisi morfometrica che ha rilevato un aumento della rugosità dei margini a 8 settimane (p < 0.001), indicativo di una progressiva colonizzazione cellulare e integrazione biologica. L’analisi statistica quantitativa ha inoltre dimostrato un decremento significativo della popolazione macrofagica (F4/80) nel passaggio dalle 4 alle 8 settimane (p < 0.001), suggerendo la risoluzione della fase infiammatoria acuta. Al contempo, i mediatori citochinici (IL-6, TNFα) hanno mostrato una persistenza controllata senza variazioni significative tra i due time-point (p > 0.05), funzionale al rimodellamento tissutale piuttosto che a processi fibrotici avversi. L’approccio integrato tra analisi biologica e computazionale ha consentito di validare l’integrazione dell’innesto e di affinare le indagini immunoistochimiche necessarie a caratterizzare la risposta dell'ospite. I parametri oggettivi forniti dall'analisi computazionale offrono strumenti solidi per studiare la biocompatibilità, ponendo le basi per future applicazioni in diversi ambiti anatomici e per la medicina rigenerativa di precisione.
Laringe Bioingegnerizzata: Un Nuovo Approccio Computazionale alla Medicina Rigenerativa
CASOLARI, GIULIA
2024/2025
Abstract
In the field of regenerative medicine and reconstructive surgery, tissue engineering represents a rapidly expanding frontier aimed at developing biological substitutes for the restoration of complex organs such as the larynx, whose functionality is often compromised by cancer or trauma. The use of decellularized scaffolds is proposed as a valid alternative to traditional grafts, aiming to recreate a physiological microenvironment suitable for regeneration and to overcome the limitations related to donor availability and adverse reactions. In this context, the evaluation of in vivo biocompatibility and foreign body response plays a crucial role, as the interaction between the decellularized graft and the host determines the integration or rejection of the implant. In this study, conducted at the Bioacoustics Laboratory of the Department of Neuroscience at the University of Padua, the tissue response to decellularized porcine cartilage scaffolds implanted in Sprague Dawley rat animal model was evaluated. The investigation combined traditional histological techniques and immunohistochemistry to characterize morphological and inflammatory evolution at four and eight weeks post-implantation. The analyses were supported by advanced computational methodologies, including ImageJ morphometry software and a customized MATLAB script for automated quantification of cellular infiltrate and inflammatory markers. The results showed a significant evolution of the interface between host and scaffold, confirmed by morphometric analysis that detected an increase in margin roughness at 8 weeks (p<0.001), indicative of progressive cell colonization and biological integration. Quantitative statistical analysis also showed a significant decrease in the macrophage population (F4/80) between 4 and 8 weeks (p < 0.001), suggesting resolution of the acute inflammatory phase. At the same time, cytokine mediators (IL-6, TNFα) showed controlled persistence with no significant changes between the two time points (p > 0.05), functional to tissue remodeling rather than adverse fibrotic processes. The integrated approach combining biological and computational analysis has made it possible to validate graft integration and refine the immunohistochemical investigations needed to characterize the host response. The objective parameters provided by computational analysis offer robust tools for studying biocompatibility, laying the foundations for future applications in various anatomical areas and for precision regenerative medicine.| File | Dimensione | Formato | |
|---|---|---|---|
|
Casolari_Giulia.pdf
Accesso riservato
Dimensione
4.04 MB
Formato
Adobe PDF
|
4.04 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/99602