In the present thesis, the degradation of phenol in aqueous matrices under different pH and ionic conductivity conditions is investigated using an atmospheric plasma reactor based on corona discharge (Multi-point Corona Discharge, MCD). The continuous evolution of global industrialization is one of the major causes of surface water contamination by organic compounds. Among these, phenols represent a class of organic substances frequently detected in petrochemical wastewater, but they may also originate from coal processing, as well as from the production of pharmaceuticals and polymer resins. These compounds are often toxic, carcinogenic, teratogenic, and potentially mutagenic. Considering phenol as a model compound, the United States Environmental Protection Agency (EPA) has set a maximum emission limit of 0.5 mg/L and a maximum concentration of 1 μg/L in drinking water. Currently, the removal of phenolic compounds from wastewater is carried out using different techniques, for example: extraction, reverse osmosis and advanced oxidation processes (AOPs). Among these, AOPs are particularly effective due to the formation of hydroxyl radicals (OH•), which can react with most organic compounds, leading to their degradation. In this work, phenol treatment by atmospheric plasma was investigated. This technology involves the application of an electric discharge to a gas at room temperature and atmospheric pressure, thereby generating a non-thermal plasma. The system creates a highly reactive environment that can be exploited for the activation of chemical reactions. The energy supplied is used to generate high-energy electrons, which in turn interact with other molecules or atoms present in the gas, triggering a cascade of reactions that lead to the formation of reactive species such as excited molecules/atoms, ions, and radicals. In the first stage of the research, the experimental conditions were optimized by testing the effect of different power levels applied to the MCD plasma reactor on phenol degradation over time. Once the optimal electrical conditions were defined, phenol degradation was evaluated in different aqueous matrices. Initially, the ionic conductivity of the matrix was varied, comparing experiments in MilliQ water and in 40 g/L NaCl solutions. The results revealed very similar degradation kinetics, thereby excluding a significant influence of salinity on treatment efficiency. The second experimental stage focused on the effect of different salts and pH on phenol degradation. Specifically, the role of bromide and carbonate ions was investigated by performing treatments with NaBr and NaHCO₃ solutions at different concentrations. Phenol degradation kinetics were monitored by HPLC-UV analysis; degradation by-products were identified by HPLC-MS and HPLC-UV using comparison with selected standards. In addition, pH and ionic conductivity of the initial and treated solutions were measured to assess the formation of acidic and ionic species during treatment. The degree of phenol mineralization was further quantified through TOC analysis. The results obtained in this study are promising, both in terms of degradation kinetics and contaminant removal efficiency, as well as in relation to the energy efficiency of the process, thus confirming the potential of atmospheric plasma technology for the removal of phenolic compounds from water. In the future, the MCD plasma reactor could be tested for the degradation of other representative organic compounds.
Nel seguente lavoro di tesi si discute la degradazione di fenolo attraverso un reattore al plasma atmosferico con scarica a corona (MCD) in matrici acquose a diverse condizioni di pH e conducibilità ionica. La costante evoluzione del processo di industrializzazione mondiale è una delle maggiori cause di contaminazione delle acque superficiali con composti organici. In particolare, i fenoli sono una classe di sostanze organiche frequentemente presenti all’interno di acque reflue di industria petrolchimica ma possono anche derivare da processi di lavorazione del carbone, dalla produzione di farmaci e di resine polimeriche. Questi composti sono spesso tossici, cancerogeni, teratogenici e potenzialmente mutageni. Considerando il fenolo come composto modello, l’Agenzia per la Protezione Ambientale degli Stati Uniti (EPA) fissa un limite massimo di emissione di 0,5 mg/L ed una concentrazione massima nelle acque potabili di 1 μg/L. Attualmente la rimozione di composti fenolici dalle acque reflue viene effettuata mediante diverse tecniche, come ad esempio: estrazione,osmosi inversa e processi di ossidazione avanzata (AOP). Tra questi, gli AOP risultano particolarmente efficaci grazie alla formazione di radicali ossidrilici OH• che possono reagire con la maggior parte dei composti organici, portando quindi alla loro degradazione. Nel presente lavoro di tesi viene quindi testato il trattamento di fenolo mediante plasma atmosferico, che prevede l’applicazione di una scarica elettrica ad un gas a temperatura ambiente e pressione atmosferica, in grado di generare un plasma non-termico. Il sistema permette di ricreare un ambiente reattivo ad alta efficienza che può essere sfruttato per l’attivazione di reazioni chimiche. L’energia fornita al sistema viene utilizzata per generare elettroni ad alta energia che interagiscono con altre molecole (o atomi) presenti nel gas, dando luogo ad una cascata di reazioni che inducono la formazione di specie reattive come molecole e/o atomi eccitati, ioni e radicali. Nella prima fase del lavoro di ricerca sono state predisposte le condizioni sperimentali, andando a testare diverse condizioni di potenza elettrica del reattore al plasma MCD sulla degradazione del fenolo nel tempo. Una volta scelte le condizioni elettriche, la degradazione di fenolo è stata testata in diverse matrici acquose. Inizialmente è stata variata la conducibilità ionica della matrice, confrontando esperimenti in acqua MilliQ ed in 40 g/L di NaCl: i risultati mostrano una cinetica di degradazione molto simile, andando quindi ad escludere l’effetto della salinità nell’efficienza del trattamento. La seconda fase sperimentale ha riguardato lo studio dell’effetto di diversi sali e pH sulla degradazione di fenolo. Nello specifico è stato indagato l’effetto dello ione bromuro e dei carbonati, attraverso trattamenti con soluzioni a diverse concentrazioni di NaBr e NaHCO3. Lo studio della cinetica di degradazione del fenolo è stato effettuato attraverso analisi HPLC-UV; per l’identificazione dei sottoprodotti di degradazione sono state eseguite analisi HPLC-MS ed HPLC-UV con confronto con alcuni standard; inoltre, grazie al monitoraggio di pH e conducibilità ionica delle soluzioni iniziali e finali, è stato possibile verificare la produzione specie acide e di specie ioniche durante il trattamento. La percentuale di mineralizzazione del fenolo è stata inoltre ricavata attraverso l’analisi TOC. I risultati emersi dal presente studio risultano promettenti, sia in termini di cinetica di degradazione e abbattimento del contaminante sia nei confronti dell’efficienza energetica del trattamento, andando quindi a confermare la validità della tecnologia al plasma atmosferico nella rimozione di composti fenolici dalle acque. In futuro, il reattore al plasma MCD potrà essere testato per la degradazione di altri composti organici rappresentativi.
Studio dell'effetto della matrice acquosa sulla degradazione di fenolo in un reattore al plasma atmosferico
CESTARO, ALBERTO
2024/2025
Abstract
In the present thesis, the degradation of phenol in aqueous matrices under different pH and ionic conductivity conditions is investigated using an atmospheric plasma reactor based on corona discharge (Multi-point Corona Discharge, MCD). The continuous evolution of global industrialization is one of the major causes of surface water contamination by organic compounds. Among these, phenols represent a class of organic substances frequently detected in petrochemical wastewater, but they may also originate from coal processing, as well as from the production of pharmaceuticals and polymer resins. These compounds are often toxic, carcinogenic, teratogenic, and potentially mutagenic. Considering phenol as a model compound, the United States Environmental Protection Agency (EPA) has set a maximum emission limit of 0.5 mg/L and a maximum concentration of 1 μg/L in drinking water. Currently, the removal of phenolic compounds from wastewater is carried out using different techniques, for example: extraction, reverse osmosis and advanced oxidation processes (AOPs). Among these, AOPs are particularly effective due to the formation of hydroxyl radicals (OH•), which can react with most organic compounds, leading to their degradation. In this work, phenol treatment by atmospheric plasma was investigated. This technology involves the application of an electric discharge to a gas at room temperature and atmospheric pressure, thereby generating a non-thermal plasma. The system creates a highly reactive environment that can be exploited for the activation of chemical reactions. The energy supplied is used to generate high-energy electrons, which in turn interact with other molecules or atoms present in the gas, triggering a cascade of reactions that lead to the formation of reactive species such as excited molecules/atoms, ions, and radicals. In the first stage of the research, the experimental conditions were optimized by testing the effect of different power levels applied to the MCD plasma reactor on phenol degradation over time. Once the optimal electrical conditions were defined, phenol degradation was evaluated in different aqueous matrices. Initially, the ionic conductivity of the matrix was varied, comparing experiments in MilliQ water and in 40 g/L NaCl solutions. The results revealed very similar degradation kinetics, thereby excluding a significant influence of salinity on treatment efficiency. The second experimental stage focused on the effect of different salts and pH on phenol degradation. Specifically, the role of bromide and carbonate ions was investigated by performing treatments with NaBr and NaHCO₃ solutions at different concentrations. Phenol degradation kinetics were monitored by HPLC-UV analysis; degradation by-products were identified by HPLC-MS and HPLC-UV using comparison with selected standards. In addition, pH and ionic conductivity of the initial and treated solutions were measured to assess the formation of acidic and ionic species during treatment. The degree of phenol mineralization was further quantified through TOC analysis. The results obtained in this study are promising, both in terms of degradation kinetics and contaminant removal efficiency, as well as in relation to the energy efficiency of the process, thus confirming the potential of atmospheric plasma technology for the removal of phenolic compounds from water. In the future, the MCD plasma reactor could be tested for the degradation of other representative organic compounds.| File | Dimensione | Formato | |
|---|---|---|---|
|
Cestaro_Alberto.pdf
Accesso riservato
Dimensione
3.41 MB
Formato
Adobe PDF
|
3.41 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/99667