Technetium-99m (99mTc) is a γ-emitting radionuclide of great interest in nuclear medicine. Its nuclear properties (Eγ=141 KeV, t1/2=6.02 h) make it optimal for SPECT (Single Photon Emission Computed Tomography) imaging using γ-cameras. A radiopharmaceutical is defined as any medicinal product containing one or more incorporated radionuclides for medical use. In so-called target-specific radiopharmaceuticals, the radionuclide is conjugated to a biologically active molecule capable of directing it towards specific cells, tissues or organs, that express the target of interest (for example membrane receptors). The P2X7 membrane receptor (P2X7R) belongs to the family of purinergic receptors, physiologically activated by high amounts of extracellular ATP. It is an ionotropic receptor widely expressed in the central nervous system (CNS), where it plays a dual role: supporting cell viability on the one hand, while being involved in apoptotic signaling cascades on the other. This latter function is of particular clinical relevance, as P2X7R activation has been linked to several neurological disorders characterized by chronic neuroinflammation, including Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, and neuropathic pain. Moreover, it has been implicated in autoimmune pathologies and various types of cancer. This thesis work focuses on the development of a radiocomplex consisting of a novel P2X7R-specific inhibitor (here designated as L for confidentiality) conjugated to the technetium-tricarbonyl fragment ([99mTc][Tc(CO)3]+). The resulting complex, [99mTc][Tc(CO)3L], holds potential as a diagnostic tool in nuclear medicine for the staging and evaluation of the aforementioned diseases. The conjugation strategy exploits the presence of a histidine residue on the ligand which, acting as a tridentate chelator, binds the Tc-tricarbonyl system, leading to the formation of a neutral and highly lipophilic complex. The neutrality and high lipophilicity are crucial characteristics, as they allow the radiocomplex to cross the blood-brain barrier, localize in the CNS and reach the P2X7R. In this work, a synthesis protocol for the radiocomplex [99mTc][Tc(CO)3L] was developed, evaluating the most suitable reaction conditions. Stability and oil/water partition studies of [99mTc][Tc(CO)3L] were also performed. The radiocomplex was finally tested for its cell affinity, evaluating its uptake in non-expressing HEK-293 cells and in engineered HEK-293 cells expressing the P2X7R, in the absence and presence of a competitive receptor inhibitor. Despite optimization, the synthesis of [99mTc][Tc(CO)3L] showed relatively low radiochemical yields; the radiocomplex proved to be stable under the tested conditions and highly lipophilic, as expected. Cellular tests showed a very significant non-specific uptake, with abundant cellular internalization; the presence of the P2X7 receptor inhibitor was irrelevant both to the uptake and the internalization, suggesting that the observed processes were primarily driven by passive diffusion rather than receptor-mediated mechanisms.
Il Tecnezio-99m (99mTc) è un radionuclide γ-emettitore di grande interesse, le cui proprietà nucleari (Eγ = 141 KeV, t1/2 = 6.02 h) lo rendono ottimale per le pratiche di imaging SPECT (Single Photon Emission Computed Tomography), nella raccolta di immagini tramite l’utilizzo di γ-camere. Con il termine radiofarmaco viene indicato qualsiasi prodotto medicinale per uso sanitario che, quando pronto per l'uso, contiene uno o più radionuclidi incorporati; nei cosiddetti radiofarmaci target-specifici, il radionuclide è coniugato ad una molecola biologicamente attiva che ne attua il direzionamento verso le cellule, i tessuti e gli organi esprimenti le molecole target (ad esempio recettori di membrana). Il recettore di membrana P2X7 (P2X7R) appartiene alla famiglia dei recettori purinergici, attivato fisiologicamente da elevate quantità di ATP extracellulare. È un recettore ionotropico diffusamente espresso a livello del sistema nervoso centrale (SNC), di grande interesse clinico in quanto associato non solo a processi alla base del supporto della vitalità cellulare, ma anche alla cascata di eventi che porta all’apoptosi. Quest’ultimo aspetto si è rivelato essere un meccanismo alla base di diversi disordini neurologici caratterizzati da neuroinfiammazione cronica come Alzheimer, Parkinson, sclerosi multipla, sclerosi laterale amiotrofica e dolore neuropatico, oltre a patologie autoimmuni e diverse forme tumorali. Questo lavoro di tesi è incentrato sullo sviluppo di un radiocomplesso costituito da un inibitore sperimentale specifico per P2X7R (qui denominato L per motivi di riservatezza) legato al frammento tecnezio-tricarbonile ([99mTc][Tc(CO)3]+). Tale complesso, [99mTc][Tc(CO)3L], potrà essere utile per la diagnosi medico-nucleare, a vari livelli di stadiazione, delle patologie sopra elencate. La formazione del coniugato sfrutta la presenza sul legante di un gruppo istidinico che, agendo da chelante tridentato, complessa il sistema Tc-tricarbonile portando alla formazione di un complesso neutro e altamente lipofilo. La neutralità e l'elevata lipofilia sono caratteristiche cruciali, in quanto permettono al radiocomplesso di superare la barriera emato-encefalica, localizzarsi nel SNC ed ivi raggiungere i recettori P2X7. In questo lavoro è stato messo a punto un protocollo di sintesi del radiocomplesso [99mTc][Tc(CO)3L], valutando le condizioni di reazione più idonee. Sono stati inoltre effettuati studi di stabilità e di ripartizione olio/acqua di [99mTc][Tc(CO)3L]. Il radiocomplesso è stato infine testato nella sua affinità cellulare, valutandone l’uptake in cellule HEK-293 non esprimenti e in cellule HEK-293 ingegnerizzate esprimenti il recettore P2X7, in assenza e in presenza di un inibitore competitivo del recettore. Nonostante l’ottimizzazione, la sintesi di [99mTc][Tc(CO)3L] ha mostrato rese radiochimiche relativamente basse; il radiocomplesso si è rivelato stabile nelle condizioni testate e altamente lipofilo come atteso. I test cellulari hanno mostrato un uptake aspecifico molto rilevante, con abbondante internalizzazione cellulare; la presenza dell’inibitore dei recettori P2X7 si è mostrata irrilevante nei confronti sia dell’uptake, sia dell’internalizzazione, ad indicazione di processi principalmente di natura diffusiva piuttosto che recettore-mediati.
SVILUPPO DI RADIOCOMPLESSI DEL TECNEZIO-99m PER L’IMAGING DEI RECETTORI DI MEMBRANA P2X7
MARINELLO, REBECCA
2024/2025
Abstract
Technetium-99m (99mTc) is a γ-emitting radionuclide of great interest in nuclear medicine. Its nuclear properties (Eγ=141 KeV, t1/2=6.02 h) make it optimal for SPECT (Single Photon Emission Computed Tomography) imaging using γ-cameras. A radiopharmaceutical is defined as any medicinal product containing one or more incorporated radionuclides for medical use. In so-called target-specific radiopharmaceuticals, the radionuclide is conjugated to a biologically active molecule capable of directing it towards specific cells, tissues or organs, that express the target of interest (for example membrane receptors). The P2X7 membrane receptor (P2X7R) belongs to the family of purinergic receptors, physiologically activated by high amounts of extracellular ATP. It is an ionotropic receptor widely expressed in the central nervous system (CNS), where it plays a dual role: supporting cell viability on the one hand, while being involved in apoptotic signaling cascades on the other. This latter function is of particular clinical relevance, as P2X7R activation has been linked to several neurological disorders characterized by chronic neuroinflammation, including Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, and neuropathic pain. Moreover, it has been implicated in autoimmune pathologies and various types of cancer. This thesis work focuses on the development of a radiocomplex consisting of a novel P2X7R-specific inhibitor (here designated as L for confidentiality) conjugated to the technetium-tricarbonyl fragment ([99mTc][Tc(CO)3]+). The resulting complex, [99mTc][Tc(CO)3L], holds potential as a diagnostic tool in nuclear medicine for the staging and evaluation of the aforementioned diseases. The conjugation strategy exploits the presence of a histidine residue on the ligand which, acting as a tridentate chelator, binds the Tc-tricarbonyl system, leading to the formation of a neutral and highly lipophilic complex. The neutrality and high lipophilicity are crucial characteristics, as they allow the radiocomplex to cross the blood-brain barrier, localize in the CNS and reach the P2X7R. In this work, a synthesis protocol for the radiocomplex [99mTc][Tc(CO)3L] was developed, evaluating the most suitable reaction conditions. Stability and oil/water partition studies of [99mTc][Tc(CO)3L] were also performed. The radiocomplex was finally tested for its cell affinity, evaluating its uptake in non-expressing HEK-293 cells and in engineered HEK-293 cells expressing the P2X7R, in the absence and presence of a competitive receptor inhibitor. Despite optimization, the synthesis of [99mTc][Tc(CO)3L] showed relatively low radiochemical yields; the radiocomplex proved to be stable under the tested conditions and highly lipophilic, as expected. Cellular tests showed a very significant non-specific uptake, with abundant cellular internalization; the presence of the P2X7 receptor inhibitor was irrelevant both to the uptake and the internalization, suggesting that the observed processes were primarily driven by passive diffusion rather than receptor-mediated mechanisms.| File | Dimensione | Formato | |
|---|---|---|---|
|
Marinello_Rebecca.pdf
Accesso riservato
Dimensione
2.99 MB
Formato
Adobe PDF
|
2.99 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/102666