Nuclear medicine employs radiopharmaceuticals for the diagnosis and treatment of numerous diseases, exploiting the ability of these compounds to selectively deliver radionuclides to specific biological targets. In the field of diagnostics, one of the most widely used radionuclides is technetium-99m (99mTc), which has ideal physical properties for imaging (γ decay of 140 keV; half-life of approximately 6 hours). Its wide availability through portable generators and the possibility of forming numerous coordination complexes allows for versatile use in the preparation of radiopharmaceuticals. Given the absence of stable technetium isotopes, rhenium, which belongs to the same group and is chemically similar, is frequently used as a non-radioactive analogue for chemical and physical characterization studies. Poly(ADP-ribose) polymerases (PARPs) are a family of nuclear enzymes involved in fundamental cellular processes such as survival, proliferation, programmed cell death, and regulation of major mechanisms of response to genomic damage. PARP1 is the most abundant and extensively studied member of the family; primarily responsible for the response induced by DNA damage, it is considered crucial in maintaining genomic integrity and cellular homeostasis. PARP1 inhibitors act by blocking the catalytic activity of the enzyme, thereby preventing the repair of single-strand DNA breaks. The resulting accumulation of DNA damage ultimately leads to the death of cancer cells, particularly those carrying BRCA1/2 mutations. In this study, novel technetium-99m and natural rhenium complexes were developed. In these complexes, the metal coordinates a conveniently functionalized PARP1-inhibitor. The radiosynthesis of the technetium-99m complexes was carried out using rapid and reproducible methods under controlled reduction and coordination conditions, while the corresponding rhenium complexes were obtained through ligand exchange reactions using [ReNCl₄(NBu₄)] as the precursor. The technetium-99m complexes obtained were characterized using UV/radio-HPLC methods; the rhenium complexes were characterized using LC-MS methods. Chromatographic comparison between the corresponding technetium-99m and rhenium complexes confirmed the identity of the technetium-99m complexes. The technetium-99m complexes were subjected to in vitro studies to evaluate their internalization and uptake in WM-266-4, MDA-MB231, HeLa, and U87-MG cell lines. The results obtained are promising and lay the foundation for the development of new radiopharmaceuticals targeting PARP-positive tumours.
La medicina nucleare fa uso di radiofarmaci per la diagnosi e la terapia di numerose patologie, sfruttando la capacità di questi composti di veicolare selettivamente radionuclidi verso specifici bersagli biologici. Nel campo della diagnostica, tra i radionuclidi più impiegati vi è il tecnezio-99m (99mTc), avente proprietà fisiche ideali per l’imaging (decadimento γ di 140 keV; emivita di circa 6 ore). La sua ampia disponibilità tramite generatori portatili e la possibilità di formare numerosi complessi di coordinazione, consente un impiego versatile nella preparazione di radiofarmaci. Data l’assenza di isotopi stabili del tecnezio, per studi di caratterizzazione chimica e fisica viene frequentemente utilizzato come analogo non radioattivo il renio, il quale appartiene allo stesso gruppo ed è chimicamente affine. Le poli(ADP-ribosio)-polimerasi (PARP) costituiscono una famiglia di enzimi nucleari coinvolti in processi cellulari fondamentali quali sopravvivenza, proliferazione, morte programmata e regolazione dei principali meccanismi di risposta al danno genomico. PARP1 è il membro della famiglia più abbondante e studiato; principale responsabile della risposta indotta da danno al DNA, è considerato cruciale nella manutenzione dell’integrità genomica e dell’omeostasi cellulare. Gli inibitori di PARP1 agiscono bloccando l’attività catalitica dell’enzima e impediscono così la riparazione delle rotture del DNA a singolo filamento. L’inibizione della riparazione provoca l’accumulo di danni al genoma e porta alla morte delle cellule tumorali, in particolare quelle aventi mutazioni BRCA1/2. Nel presente lavoro sono stati sintetizzati nuovi complessi di tecnezio-99m e di renio naturale coordinati ad un inibitore di PARP1 opportunamente funzionalizzato per consentire il legame con il metallo. La radiosintesi dei complessi di tecnezio-99m è stata condotta con metodiche rapide e riproducibili in condizioni controllate di riduzione e coordinazione, mentre i corrispondenti complessi di renio sono stati ottenuti attraverso reazioni di scambio di leganti utilizzando [ReNCl₄(NBu₄)] come precursore. I complessi di tecnezio-99m ottenuti sono stati caratterizzati con metodiche UV/radio-HPLC; i complessi di renio sono stati caratterizzati con metodiche LC-MS. Il confronto cromatografico tra i corrispondenti complessi di tecnezio-99m e renio ha permesso di confermare l’identità dei complessi di tecnezio-99m. I complessi di tecnezio-99m sono stati inoltre sottoposti a studi in vitro per valutarne l’internalizzazione e l’uptake in cellule delle linee WM-266-4, MDA-MB231, HeLa, U87-MG. I risultati degli esperimenti sono incoraggianti e pongono le basi per lo sviluppo di nuovi radiofarmaci mirati ai tumori PARP positivi.
SVILUPPO DI NUOVI COMPLESSI DEL 99mTc SPECIFICI PER LA DIAGNOSTICA DEI TUMORI PARP POSITIVI
NARDELLI, ALESSIO
2024/2025
Abstract
Nuclear medicine employs radiopharmaceuticals for the diagnosis and treatment of numerous diseases, exploiting the ability of these compounds to selectively deliver radionuclides to specific biological targets. In the field of diagnostics, one of the most widely used radionuclides is technetium-99m (99mTc), which has ideal physical properties for imaging (γ decay of 140 keV; half-life of approximately 6 hours). Its wide availability through portable generators and the possibility of forming numerous coordination complexes allows for versatile use in the preparation of radiopharmaceuticals. Given the absence of stable technetium isotopes, rhenium, which belongs to the same group and is chemically similar, is frequently used as a non-radioactive analogue for chemical and physical characterization studies. Poly(ADP-ribose) polymerases (PARPs) are a family of nuclear enzymes involved in fundamental cellular processes such as survival, proliferation, programmed cell death, and regulation of major mechanisms of response to genomic damage. PARP1 is the most abundant and extensively studied member of the family; primarily responsible for the response induced by DNA damage, it is considered crucial in maintaining genomic integrity and cellular homeostasis. PARP1 inhibitors act by blocking the catalytic activity of the enzyme, thereby preventing the repair of single-strand DNA breaks. The resulting accumulation of DNA damage ultimately leads to the death of cancer cells, particularly those carrying BRCA1/2 mutations. In this study, novel technetium-99m and natural rhenium complexes were developed. In these complexes, the metal coordinates a conveniently functionalized PARP1-inhibitor. The radiosynthesis of the technetium-99m complexes was carried out using rapid and reproducible methods under controlled reduction and coordination conditions, while the corresponding rhenium complexes were obtained through ligand exchange reactions using [ReNCl₄(NBu₄)] as the precursor. The technetium-99m complexes obtained were characterized using UV/radio-HPLC methods; the rhenium complexes were characterized using LC-MS methods. Chromatographic comparison between the corresponding technetium-99m and rhenium complexes confirmed the identity of the technetium-99m complexes. The technetium-99m complexes were subjected to in vitro studies to evaluate their internalization and uptake in WM-266-4, MDA-MB231, HeLa, and U87-MG cell lines. The results obtained are promising and lay the foundation for the development of new radiopharmaceuticals targeting PARP-positive tumours.| File | Dimensione | Formato | |
|---|---|---|---|
|
Nardelli_Alessio.pdf
Accesso riservato
Dimensione
3.02 MB
Formato
Adobe PDF
|
3.02 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/102671