Melanoma is the most aggressive form of skin cancer, driven by genetic, environmental, and host-related factors. Its high metastatic potential and poor responsiveness to therapy make it a major clinical challenge. Conventional treatments such as surgery, radiation, and chemotherapy provide limited benefit: while surgical excision is effective in early stages, relapses occur in about 20% of patients, and chemotherapy shows low response rates with little durable remission. Targeted therapies, including BRAF and MEK inhibitors, have improved outcomes in patients with specific mutations but remain limited by resistance, transient responses, and toxicity. Recent advances with immune checkpoint inhibitors (ICIs) have significantly expanded therapeutic options, yet resistance and heterogeneous responses continue to hinder long-term efficacy. In this context, oncolytic viruses (OVs) are a novel class of immunotherapies that have been engineered to selectively infect and lyse cancer cells while sparing normal tissue. In addition to direct tumour lysis, OVs have been shown to stimulate antitumour immunity by releasing tumour antigens and cytokines, thereby converting immunologically "cold" tumours into "hot" ones. This dual mechanism positions OVs as promising agents in the treatment of melanoma, particularly in combination with immune checkpoint inhibitors. Building on these therapeutic advantages, the aim of this study was to establish and characterize three-dimensional (3D) melanoma models to evaluate the efficacy of combined immunotherapeutic approaches. A panel of patient-derived melanoma cell lines established by Professor Rinner’s group at the Medical University of Graz (Austria)—which I joined for my Erasmus traineeship—(MUG Mel-1, MUG Mel-2, MUG Mel-3 PF, and NPF) was used to generate spheroid cultures and co-cultures with peripheral blood mononuclear cells (PBMCs). Two engineered oncolytic adenoviral vectors were evaluated: Ad5/3-D24, characterized by enhanced tropism for tumour cells through DSG2/CAR-independent entry, and Ad5/3-D24-ICOSL-CD40L, which retains the same tumour selectivity but additionally expresses two immunostimulatory molecules ICOSL and CD40L to promote T-cell activation. Treatments included single-agent administration or combination with ICIs (Ipilimumab and Nivolumab) and the multikinase inhibitor Nintedanib. Results highlighted the improved physiological relevance of 3D based co-culture models compared to conventional 2D cell culture systems, unveiling differences in drug responses and immune interactions. Notably, the combination of OVs, immune checkpoint inhibitors and Nintedanib produced synergistic effects, supporting their potential as a promising therapeutic strategy against melanoma. Nevertheless, OVs face limitations, particularly regarding their delivery to tumour sites. Consequently, the utilisation of extracellular vesicles (EVs) as carriers is being explored. In this context, a preliminary characterization of tumour-derived EVs was initiated to explore their potential in future delivery strategies. In conclusion, this work establishes 3D based melanoma co-cultures as robust preclinical platforms for immunotherapy testing and highlights both the potential and current challenges of OV-based therapies, while pointing to EVs as innovative tools for enhancing delivery and therapeutic efficacy.
Il melanoma rappresenta la forma più aggressiva di tumore cutaneo, determinata da fattori genetici, ambientali e legati all’ospite. I trattamenti convenzionali, come chirurgia, radioterapia e chemioterapia, offrono benefici limitati. L’escissione chirurgica, efficace negli stadi iniziali, vede circa il 20% dei pazienti andare incontro a recidiva. La chemioterapia invece, presenta bassi tassi di risposta e scarsa durata dell’efficacia. Le terapie mirate, come gli inibitori di BRAF e MEK, hanno migliorato la prognosi dei pazienti con specifiche mutazioni, ma sono ostacolate da resistenze, risposte transitorie e tossicità. I recenti progressi ottenuti con gli inibitori dei checkpoint immunitari (ICI) hanno ampliato le opzioni terapeutiche; tuttavia, la resistenza e la variabilità delle risposte continuano a limitarne l’efficacia a lungo termine. In questo contesto, i virus oncolitici (OV) rappresentano una nuova classe di immunoterapie progettate per infettare e lisare selettivamente le cellule tumorali, risparmiando quelle sane. Oltre all’azione litica diretta, gli OV stimolano la risposta immunitaria antitumorale attraverso il rilascio di antigeni e citochine tumorali, trasformando così i tumori immunologicamente “freddi” in “caldi”. Questo duplice meccanismo rende i virus oncolitici candidati promettenti per il trattamento del melanoma, soprattutto in combinazione con gli ICI. Sulla base di questi presupposti, l’obiettivo di questo studio è stato sviluppare e caratterizzare modelli tridimensionali (3D) di melanoma per valutare l’efficacia di approcci immunoterapeutici combinati. È stato impiegato un pannello di linee cellulari di melanoma derivate da pazienti, stabilite dal gruppo della Professoressa Rinner presso la Medical University of Graz, dove ho svolto il mio tirocinio Erasmus, (MUG Mel-1, MUG Mel-2, MUG Mel-3 PF e NPF), per la generazione di colture sferoidali e co-colture con cellule mononucleate del sangue periferico (PBMCs). Sono stati valutati due vettori adenovirali oncolitici ingegnerizzati: Ad5/3-D24, caratterizzato da un aumentato tropismo verso le cellule tumorali grazie a un ingresso indipendente dai recettori DSG2/CAR, e Ad5/3-D24-ICOSL-CD40L, che mantiene la stessa selettività tumorale ma esprime in aggiunta due molecole immunostimolatorie (ICOSL e CD40L) per promuovere l’attivazione dei linfociti T. I trattamenti includevano la somministrazione singola o in combinazione con inibitori dei checkpoint immunitari (Ipilimumab e Nivolumab) e con l’inibitore multichinasico Nintedanib. I risultati hanno evidenziato la maggiore rilevanza fisiologica dei modelli 3D in co-coltura rispetto ai sistemi convenzionali 2D, rivelando differenze significative nelle risposte ai farmaci e nelle interazioni immunitarie. In particolare, la combinazione di OVs, ICI e Nintedanib ha mostrato effetti sinergici, suggerendo il potenziale di questa strategia terapeutica nel trattamento del melanoma. Tuttavia, i virus oncolitici presentano ancora alcune limitazioni, in particolare legate alla loro efficacia di veicolazione verso il sito tumorale. Per questo motivo, l’impiego di vescicole extracellulari (EVs) come potenziali vettori è oggetto di crescente interesse. In tale ambito, è stata avviata una caratterizzazione preliminare delle EVs derivate da cellule tumorali, al fine di esplorarne l’utilizzo in future strategie di delivery. In conclusione, questo lavoro dimostra come i modelli 3D di co-colture di melanoma rappresentino piattaforme precliniche solide per lo studio delle immunoterapie e mette in luce sia il potenziale che le sfide attuali delle terapie basate su virus oncolitici, evidenziando infine il ruolo innovativo delle vescicole extracellulari nel migliorare la veicolazione e l’efficacia terapeutica.
Development of Advanced 3D Cell Culture Models for Delivering Immunotherapies Towards Melanoma
DALLA ROSA, LUISA STELLA
2024/2025
Abstract
Melanoma is the most aggressive form of skin cancer, driven by genetic, environmental, and host-related factors. Its high metastatic potential and poor responsiveness to therapy make it a major clinical challenge. Conventional treatments such as surgery, radiation, and chemotherapy provide limited benefit: while surgical excision is effective in early stages, relapses occur in about 20% of patients, and chemotherapy shows low response rates with little durable remission. Targeted therapies, including BRAF and MEK inhibitors, have improved outcomes in patients with specific mutations but remain limited by resistance, transient responses, and toxicity. Recent advances with immune checkpoint inhibitors (ICIs) have significantly expanded therapeutic options, yet resistance and heterogeneous responses continue to hinder long-term efficacy. In this context, oncolytic viruses (OVs) are a novel class of immunotherapies that have been engineered to selectively infect and lyse cancer cells while sparing normal tissue. In addition to direct tumour lysis, OVs have been shown to stimulate antitumour immunity by releasing tumour antigens and cytokines, thereby converting immunologically "cold" tumours into "hot" ones. This dual mechanism positions OVs as promising agents in the treatment of melanoma, particularly in combination with immune checkpoint inhibitors. Building on these therapeutic advantages, the aim of this study was to establish and characterize three-dimensional (3D) melanoma models to evaluate the efficacy of combined immunotherapeutic approaches. A panel of patient-derived melanoma cell lines established by Professor Rinner’s group at the Medical University of Graz (Austria)—which I joined for my Erasmus traineeship—(MUG Mel-1, MUG Mel-2, MUG Mel-3 PF, and NPF) was used to generate spheroid cultures and co-cultures with peripheral blood mononuclear cells (PBMCs). Two engineered oncolytic adenoviral vectors were evaluated: Ad5/3-D24, characterized by enhanced tropism for tumour cells through DSG2/CAR-independent entry, and Ad5/3-D24-ICOSL-CD40L, which retains the same tumour selectivity but additionally expresses two immunostimulatory molecules ICOSL and CD40L to promote T-cell activation. Treatments included single-agent administration or combination with ICIs (Ipilimumab and Nivolumab) and the multikinase inhibitor Nintedanib. Results highlighted the improved physiological relevance of 3D based co-culture models compared to conventional 2D cell culture systems, unveiling differences in drug responses and immune interactions. Notably, the combination of OVs, immune checkpoint inhibitors and Nintedanib produced synergistic effects, supporting their potential as a promising therapeutic strategy against melanoma. Nevertheless, OVs face limitations, particularly regarding their delivery to tumour sites. Consequently, the utilisation of extracellular vesicles (EVs) as carriers is being explored. In this context, a preliminary characterization of tumour-derived EVs was initiated to explore their potential in future delivery strategies. In conclusion, this work establishes 3D based melanoma co-cultures as robust preclinical platforms for immunotherapy testing and highlights both the potential and current challenges of OV-based therapies, while pointing to EVs as innovative tools for enhancing delivery and therapeutic efficacy.| File | Dimensione | Formato | |
|---|---|---|---|
|
DallaRosa_LuisaStella.pdf
accesso aperto
Dimensione
28.55 MB
Formato
Adobe PDF
|
28.55 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/102990