This paper allows to understand how to approach and describe all the steps to perform a dynamic analysis of a 3RRR plane manipulator, three kinematic chains composed by two equal rigid members and three rotoidal pairs that allow the union between the links, the frame and the end-effector, where after a brief explanation of the possible uses and the various parts adopted, we proceed with the kinematic analysis of the mechanism. That makes it possible to identify the values of the free coordinates for the position and velocity, respectively, which must be expressed as a function of the desired trajectory; since the masses of the members are not considered because they are negligible, the acceleration analysis is superfluous in this case. Once this part has been completed here, we can proceed to identify and calculate the forces in play using the Newtonian method, which are necessary to calculate the torques using the Principle of Virtual Work, where, after a brief explanation, all the various formulas used have indicated. A fundamental note in these passages is the use of the speed ratios. through appropriate and necessary clarifications, allow the final calculation of the torques and consequently that of the powers. All these will be developed by means of a calculator to execute certain trajectories desired by us which, by indicating only the starting and finishing points, for the two axes in the plane and for the possible rotation of the end-effector, will also make it possible to calculate the necessary speeds and accelerations that the mechanism must develop to arrive within the foreseen times. Through the use of the Matlab simulation program, we have been able to apply the formulas described in order to develop graphs that would allow us to check that all the calculations were correct, as well as to understand the torques to be applied at all times by the presumed electric motors used
Questo elaborato permette di capire come ci si approccia e tutti i passaggi da svolgere per eseguire un'analisi dinamica di un manipolatore piano a 3RRR, ovvero tre catene cinematiche composte da 2 membri rigidi uguali e tre coppie rotoidali che permettono l'unione tra i link, il telaio e l'end-effector, dove dopo una breve spiegazione sui possibili utilizzi e sulle varie parti adottate si procede con l'analisi cinematica del meccanismo. Questo consente di individuare i valori delle coordinate libere rispettivamente per la posizione e la velocità che devono esprimere in funzione della traiettoria desiderata, dato che non si considerano le masse dei membri perchè trascurabili l'analisi di accelerazione risulta superflua in questo caso. Terminata questa parte qua si può procedere a individuare e calcolare le forze in gioco tramite il metodo Newtoniano, necessarie per il calcolo delle coppie attraverso l'appoggio del Principio dei Lavori Virtuali (PLV), dove dopo una breve spiegazione si indicano tutte le varie formule utilizzate. Nota fondamentale in questi passaggi sono l'uso dei rapporti di velocità che attraverso delle adeguate e doverose precisazioni permetto il calcolo finale delle coppie e di conseguenza quello delle potenze. Tutto questo sarà poi sviluppato tramite calcolatore per eseguire determinate traiettorie volute da noi che indicando solamente i punti di partenza e arrivo, per i due assi nel piano e per l'eventuale rotazione dell'end-effector, consentono di calcolare anche le velocità e le accelerazioni necessarie che il meccanismo deve sviluppare per arrivare entro i tempi previsti. Attraverso l'uso del programma di simulazione Matlab si è potuto applicare le formule descritte in modo da sviluppare dei grafici che ci permettessero sia di controllare che tutti i calcoli fossero corretti oltre a capire quale fossero le coppie da applicare in ogni momento dai presunti motori elettrici utilizzati.
Analisi dinamica di un manipolatore piano a tre gradi di libertà
MARCON, RICCARDO
2021/2022
Abstract
This paper allows to understand how to approach and describe all the steps to perform a dynamic analysis of a 3RRR plane manipulator, three kinematic chains composed by two equal rigid members and three rotoidal pairs that allow the union between the links, the frame and the end-effector, where after a brief explanation of the possible uses and the various parts adopted, we proceed with the kinematic analysis of the mechanism. That makes it possible to identify the values of the free coordinates for the position and velocity, respectively, which must be expressed as a function of the desired trajectory; since the masses of the members are not considered because they are negligible, the acceleration analysis is superfluous in this case. Once this part has been completed here, we can proceed to identify and calculate the forces in play using the Newtonian method, which are necessary to calculate the torques using the Principle of Virtual Work, where, after a brief explanation, all the various formulas used have indicated. A fundamental note in these passages is the use of the speed ratios. through appropriate and necessary clarifications, allow the final calculation of the torques and consequently that of the powers. All these will be developed by means of a calculator to execute certain trajectories desired by us which, by indicating only the starting and finishing points, for the two axes in the plane and for the possible rotation of the end-effector, will also make it possible to calculate the necessary speeds and accelerations that the mechanism must develop to arrive within the foreseen times. Through the use of the Matlab simulation program, we have been able to apply the formulas described in order to develop graphs that would allow us to check that all the calculations were correct, as well as to understand the torques to be applied at all times by the presumed electric motors usedFile | Dimensione | Formato | |
---|---|---|---|
Marcon_Riccardo.pdf
accesso aperto
Dimensione
3.12 MB
Formato
Adobe PDF
|
3.12 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/10875