The generation of good random numbers impacts basic research and applications beyond pure academic interests: random numbers are required for countless applications, such as cryptography and simulations. For most applications, it is of outmost importance to know if a set of numbers is truly random, pseudo-random or contains some residual correlations. Tensor networks are powerful data structures that spring from quantum many-body physics and are now increasingly applied to machine learning applications. This thesis plans to explore the intersection between these two fields, applying quantum-inspired machine learning to random number generation. We aim to perform and characterise novel statistical checks comparing and characterising the statistical quality of different number sets: correlated, pseudo-random, and quantum-random.

Quantum random number characterization via quantum inspired machine learning

Faorlin, Tommaso
2020/2021

Abstract

The generation of good random numbers impacts basic research and applications beyond pure academic interests: random numbers are required for countless applications, such as cryptography and simulations. For most applications, it is of outmost importance to know if a set of numbers is truly random, pseudo-random or contains some residual correlations. Tensor networks are powerful data structures that spring from quantum many-body physics and are now increasingly applied to machine learning applications. This thesis plans to explore the intersection between these two fields, applying quantum-inspired machine learning to random number generation. We aim to perform and characterise novel statistical checks comparing and characterising the statistical quality of different number sets: correlated, pseudo-random, and quantum-random.
2020-10
25
Machine learning, Tensor Network, Quantum Random Numbers, Random Numbers, ML, TNML, QRN
File in questo prodotto:
File Dimensione Formato  
Tesi_Faorlin_Tommaso.pdf

accesso aperto

Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/22712