The thesis describes the process of preliminary design, prototyping, testing and iteration of a quadcopter drone compliant with constraints imposed by a real world scenario, while evaluating strenghts and weaknesses of the design in order to give effective development suggestions for similar projects. In particular an assessment of best practices related to the structural use of PLA 3D printed parts for drone prototyping is discussed, as well as reliability and integration problems and solutions. This first part of the thesis is concluded with a summary of lessons learned which point to a possible further iteration of the drone design. The second part of the thesis describes the attempt to maximize the hovering performance of the drone using a ducted propeller scheme optimized with CFD simulations. Solidworks and the Solidworks Flow Simulation environment are used to evaluate the tradeoff between the thrust augmentation provided by the addition of a duct around the drone's propeller versus the added weight that such component introduces. The methodology followed consists in finding the optimal set of geometrical parameters which define the duct shape in order to maximize thrust with the given constraints and boundary conditions. This is achieved through the use of multiparameter optimization algorithms embedded in the Solidworks Flow Simulation environment.The value of the maximum thrust is then compared with the estimated weight of the component to extrapolate the net thrust gain.The second part of the thesis is concluded by experimental thrust tests on a 3D printed duct to evaluate the correlation between CFD and real world results.
The thesis describes the process of preliminary design, prototyping, testing and iteration of a quadcopter drone compliant with constraints imposed by a real world scenario, while evaluating strenghts and weaknesses of the design in order to give effective development suggestions for similar projects. In particular an assessment of best practices related to the structural use of PLA 3D printed parts for drone prototyping is discussed, as well as reliability and integration problems and solutions. This first part of the thesis is concluded with a summary of lessons learned which point to a possible further iteration of the drone design. The second part of the thesis describes the attempt to maximize the hovering performance of the drone using a ducted propeller scheme optimized with CFD simulations. Solidworks and the Solidworks Flow Simulation environment are used to evaluate the tradeoff between the thrust augmentation provided by the addition of a duct around the drone's propeller versus the added weight that such component introduces. The methodology followed consists in finding the optimal set of geometrical parameters which define the duct shape in order to maximize thrust with the given constraints and boundary conditions. This is achieved through the use of multiparameter optimization algorithms embedded in the Solidworks Flow Simulation environment.The value of the maximum thrust is then compared with the estimated weight of the component to extrapolate the net thrust gain.The second part of the thesis is concluded by experimental thrust tests on a 3D printed duct to evaluate the correlation between CFD and real world results.
DESIGN AND PROTOTYPING OF A QUADCOPTER DRONE AND MULTIPARAMETER OPTIMIZATION OF A DUCTED PROPELLER
SCOMPARIN, GIACOMO
2021/2022
Abstract
The thesis describes the process of preliminary design, prototyping, testing and iteration of a quadcopter drone compliant with constraints imposed by a real world scenario, while evaluating strenghts and weaknesses of the design in order to give effective development suggestions for similar projects. In particular an assessment of best practices related to the structural use of PLA 3D printed parts for drone prototyping is discussed, as well as reliability and integration problems and solutions. This first part of the thesis is concluded with a summary of lessons learned which point to a possible further iteration of the drone design. The second part of the thesis describes the attempt to maximize the hovering performance of the drone using a ducted propeller scheme optimized with CFD simulations. Solidworks and the Solidworks Flow Simulation environment are used to evaluate the tradeoff between the thrust augmentation provided by the addition of a duct around the drone's propeller versus the added weight that such component introduces. The methodology followed consists in finding the optimal set of geometrical parameters which define the duct shape in order to maximize thrust with the given constraints and boundary conditions. This is achieved through the use of multiparameter optimization algorithms embedded in the Solidworks Flow Simulation environment.The value of the maximum thrust is then compared with the estimated weight of the component to extrapolate the net thrust gain.The second part of the thesis is concluded by experimental thrust tests on a 3D printed duct to evaluate the correlation between CFD and real world results.File  Dimensione  Formato  

Scomparin_Giacomo.pdf
accesso aperto
Dimensione
4.36 MB
Formato
Adobe PDF

4.36 MB  Adobe PDF  Visualizza/Apri 
The text of this website © Università degli studi di Padova. Full Text are published under a nonexclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/31760