Over the past few years, machine learning has undergone significant developments, so that it has been increasingly used in a wide variety of disciplines. In particular, artificial neural networks have been applied in the modeling of electronic circuits to improve their performance. The optimization of Remaining Useful Lifetime’s estimate, a parameter that evaluates the degradation of devices, is an example of this.
Negli ultimi anni, il machine learning ha subito sviluppi significativi, tanto da essere sempre più utilizzato in un'ampia varietà di discipline. In particolare, le reti neurali artificiali hanno trovato applicazione nel modeling di circuiti elettronici con lo scopo di migliorarne le prestazioni. L’ottimizzazione della stima del Remaining Useful Lifetime, un parametro che valuta la degradazione dei dispositivi, ne è un esempio.
Machine learning applicato alla modellistica dei circuiti: stima del Remaining Useful Lifetime
MAROGNA, DENISE
2021/2022
Abstract
Over the past few years, machine learning has undergone significant developments, so that it has been increasingly used in a wide variety of disciplines. In particular, artificial neural networks have been applied in the modeling of electronic circuits to improve their performance. The optimization of Remaining Useful Lifetime’s estimate, a parameter that evaluates the degradation of devices, is an example of this.File | Dimensione | Formato | |
---|---|---|---|
Marogna_Denise.pdf
Open Access dal 23/07/2023
Dimensione
668.91 kB
Formato
Adobe PDF
|
668.91 kB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/32549