A human motion capture system can be defined as a process that digitally records the movements of a person and then translates them into computer-animated images. To achieve this goal, motion capture systems usually exploit different types of algorithms, which include techniques such as pose estimation or background subtraction: this latter aims at segmenting moving objects from the background under multiple challenging scenarios. Recently, encoder-decoder-type deep neural networks designed to accomplish this task have reached impressive results, outperforming classical approaches. The aim of this thesis is to evaluate and discuss the predictions provided by the multi-scale convolutional neural network FgSegNet_v2, a deep learning-based method which represents the current state-of-the-art for implementing scene-specific background subtraction. In this work, FgSegNet_v2 is trained and tested on BBSoF S.r.l. dataset, extending its scene- specific use to a more general application in several environments.

Markerless Motion Capture via Convolutional Neural Network

MONACO, NICCOLÒ
2021/2022

Abstract

A human motion capture system can be defined as a process that digitally records the movements of a person and then translates them into computer-animated images. To achieve this goal, motion capture systems usually exploit different types of algorithms, which include techniques such as pose estimation or background subtraction: this latter aims at segmenting moving objects from the background under multiple challenging scenarios. Recently, encoder-decoder-type deep neural networks designed to accomplish this task have reached impressive results, outperforming classical approaches. The aim of this thesis is to evaluate and discuss the predictions provided by the multi-scale convolutional neural network FgSegNet_v2, a deep learning-based method which represents the current state-of-the-art for implementing scene-specific background subtraction. In this work, FgSegNet_v2 is trained and tested on BBSoF S.r.l. dataset, extending its scene- specific use to a more general application in several environments.
2021
Markerless Motion Capture via Convolutional Neural Network
Motion Capture
Deep Learning
Foreground Mask
File in questo prodotto:
File Dimensione Formato  
Monaco_Niccolò.pdf

accesso aperto

Dimensione 8.76 MB
Formato Adobe PDF
8.76 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/35518