Quantum computers aim at exploiting genuine quantum features, such as entanglement and coherent superposition, to execute certain computational tasks exponentially faster than classical processors. In 2019, Google claimed the achievement of the so-called quantum supremacy, i.e. the capability of performing tasks unattainable by classical computers. They experimentally realized an entangled quantum many-body state by running pseudo-random quantum circuits on a superconducting-qubit chip. In this thesis, we emulate the realization of random quantum circuits with numerical simulations. By applying exact numerical methods, we simulate the state preparation and the experimental measurement process, considering possible lattice geometries and circuit depths.
I computer quantistici mirano a sfruttare proprietà genuinamente quantistiche, quali entanglement e sovrapposizione coerente, per risolvere specifici problemi computazionali in modo esponenzialmente più veloce rispetto ai calcolatori classici. Nel 2019, Google ha annunciato il raggiungimento della cosiddetta supremazia quantistica, cioè la possibilità di svolgere con un processore quantistico processi irrealizzabili dai computer classici. Il team di Google ha realizzato sperimentalmente uno stato quantistico entangled a molti corpi, eseguendo circuiti quantistici pseudo-casuali su un chip a qubit superconduttivi. In questa tesi, si emula la realizzazione di circuiti quantistici casuali con simulazioni numeriche. Tramite metodi numerici esatti, si simula la preparazione dello stato e il processo sperimentale di misura, considerando diverse geometrie del lattice e circuiti di varia profondità.
Exact emulation of quantum random circuits
QUAGLIO, EMANUELE
2022/2023
Abstract
Quantum computers aim at exploiting genuine quantum features, such as entanglement and coherent superposition, to execute certain computational tasks exponentially faster than classical processors. In 2019, Google claimed the achievement of the so-called quantum supremacy, i.e. the capability of performing tasks unattainable by classical computers. They experimentally realized an entangled quantum many-body state by running pseudo-random quantum circuits on a superconducting-qubit chip. In this thesis, we emulate the realization of random quantum circuits with numerical simulations. By applying exact numerical methods, we simulate the state preparation and the experimental measurement process, considering possible lattice geometries and circuit depths.File | Dimensione | Formato | |
---|---|---|---|
Quaglio_Emanuele.pdf
accesso riservato
Dimensione
2.14 MB
Formato
Adobe PDF
|
2.14 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/45491